Queue Recontruction by Height

Suppose you have a random list of people standing in a queue. Each person is described by a pair of integers (h, k), where h is the height of the person and k is the number of people in front of this person who have a height greater than or equal to h. Write an algorithm to reconstruct the queue. Note: The number of people is less than 1,100. Example Input: [[7,0], [4,4], [7,1], [5,0], [6,1], [5,2]] Output: [[5,0], [7,0], [5,2], [6,1], [4,4], [7,1]] Solution: public class Solution { public int[][] reconstructQueue(int[][] people) { Arrays.sort(people, (a,b)->(a[0]==b[0] ?

Evaluate Division

Equations are given in the format A / B = k, where A and B are variables represented as strings, and k is a real number (floating point number). Given some queries, return the answers. If the answer does not exist, return -1.0. Example: Given a / b = 2.0, b / c = 3.0. queries are: a / c = ?, b / a = ?, a / e = ?, a / a = ?, x / x = ?

Burst Balloons

Given n balloons, indexed from 0 to n-1. Each balloon is painted with a number on it represented by array nums. You are asked to burst all the balloons. If the you burst balloon i you will get nums[left] * nums[i] * nums[right] coins. Here left and right are adjacent indices of i. After the burst, the left and right then becomes adjacent. Find the maximum coins you can collect by bursting the balloons wisely.

Compare Version Numbers

Compare two version numbers version1 and version2. If version1 > version2 return 1, if version1 < version2 return -1, otherwise return 0. You may assume that the version strings are non-empty and contain only digits and the . character. The . character does not represent a decimal point and is used to separate number sequences. For instance, 2.5 is not “two and a half” or “half way to version three”, it is the fifth second-level revision of the second first-level revision.

Roman to Integer

Given a roman numeral, convert it to an integer. Input is guaranteed to be within the range from 1 to 3999. Solution: public class Solution { public int romanToInt(String s) { Map<Character, Integer> roman = new HashMap<>(); roman.put('I',1); roman.put('V',5); roman.put('X',10); roman.put('L',50); roman.put('C',100); roman.put('D',500); roman.put('M',1000); int ans = 0; for(int i=0; i<s.length()-1; i++){ if(roman.get(s.charAt(i))<roman.get(s.charAt(i+1))) ans -= roman.get(s.charAt(i)); else ans += roman.get(s.charAt(i)); } return ans + roman.get(s.charAt(s.length()-1)); } }

Super Ugly Number

Write a program to find the nth super ugly number. Super ugly numbers are positive numbers whose all prime factors are in the given prime list primes of size k. For example, [1, 2, 4, 7, 8, 13, 14, 16, 19, 26, 28, 32] is the sequence of the first 12 super ugly numbers given primes = [2, 7, 13, 19] of size 4. Note: (1) 1 is a super ugly number for any given primes.

Best Time to Buy and Sell Stock with Cooldown

Say you have an array for which the ith element is the price of a given stock on day i. Design an algorithm to find the maximum profit. You may complete as many transactions as you like (ie, buy one and sell one share of the stock multiple times) with the following restrictions: You may not engage in multiple transactions at the same time (ie, you must sell the stock before you buy again).

Is Subsequence

Given a string s and a string t, check if s is subsequence of t. You may assume that there is only lower case English letters in both s and t. t is potentially a very long (length ~= 500,000) string, and s is a short string (<=100). A subsequence of a string is a new string which is formed from the original string by deleting some (can be none) of the characters without disturbing the relative positions of the remaining characters.

Count Numbers with With Unique Digits

Given a non-negative integer n, count all numbers with unique digits, x, where 0 ≤ x < 10n. Example: Given n = 2, return 91. (The answer should be the total numbers in the range of 0 ≤ x < 100, excluding [11,22,33,44,55,66,77,88,99]) Hint: A direct way is to use the backtracking approach. Backtracking should contains three states which are (the current number, number of steps to get that number and a bitmask which represent which number is marked as visited so far in the current number).

Linked List Random Node

Given a singly linked list, return a random node’s value from the linked list. Each node must have the same probability of being chosen. Follow up: What if the linked list is extremely large and its length is unknown to you? Could you solve this efficiently without using extra space? Example: // Init a singly linked list [1,2,3]. ListNode head = new ListNode(1); head.next = new ListNode(2); head.next.next = new ListNode(3); Solution solution = new Solution(head); // getRandom() should return either 1, 2, or 3 randomly.