
Distributed Autonomous Virtual Resource Management
in Datacenters Using Finite-Markov Decision Process

Liuhua Chen, Haiying Shen and Karan Sapra
Department of Electrical and Computer Engineering
Clemson University, Clemson, South Carolina 29634

{liuhuac, shenh, ksapra}@clemson.edu

Abstract
To provide robust infrastructure as a service (IaaS), clouds
currently perform load balancing by migrating virtual ma-
chines (VMs) from heavily loaded physical machines (PMs)
to lightly loaded PMs. Previous reactive load balancing al-
gorithms migrate VMs upon the occurrence of load imbal-
ance, while previous proactive load balancing algorithms
predict PM overload to conduct VM migration. However,
both methods cannot maintain long-term load balance and
produce high overhead and delay due to migration VM se-
lection and destination PM selection. To overcome these
problems, in this paper, we propose a proactive Markov
Decision Process (MDP)-based load balancing algorithm.
We handle the challenges of allying MDP in virtual re-
source management in cloud datacenters, which allows a PM
to proactively find an optimal action to transit to a lightly
loaded state that will maintain for a longer period of time.
We also apply the MDP to determine destination PMs to
achieve long-term PM load balance state. Our algorithm re-
duces the numbers of Service Level Agreement (SLA) vi-
olations by long-term load balance maintenance, and also
reduces the load balancing overhead (e.g., CPU time, en-
ergy) and delay by quickly identifying VMs and destina-
tion PMs to migrate. Our trace-driven experiments show that
our algorithm outperforms both previous reactive and proac-
tive load balancing algorithms in terms of SLA violation,
load balancing efficiency and long-term load balance main-
tenance.
Categories and Subject Descriptors C.4 [Performance of
Systems]: Design studies
General Terms Algorithms, Design, Performance
Keywords MDP, Cloud computing, Resource management

Copyright c© 2014 by the Association for Computing Machinery, Inc. (ACM). Permis-
sion to make digital or hard copies of all or part of this work for personal or classroom
use is granted without fee provided that copies are not made or distributed for profit
or commercial advantage and that copies bear this notice and the full citation on the
first page. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to
post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SoCC ’14, 3-5 Nov. 2014, Seattle, Washington, USA.
ACM 978-1-4503-3252-1.
http://dx.doi.org/10.1145/2670979.2671003

1. Introduction
Cloud computing is a new emerging IT service, which pro-

vides various services under one roof. Services such as stor-
age, computing and web hosting, which used to be provided
by different providers, are now provided by a single provider
[1–3]. Many businesses move their services to clouds with
their flexible “pay as you go” service model, in which a
cloud customer only pays for the resources it has used. Such
elasticity of the service model brings about cost saving for
most businesses [15] by eliminating the need of developing,
maintaining and scaling a large private infrastructure.

Clouds utilize hardware virtualization, which enables a
physical machine (PM) to run multiple virtual machines
(VMs) with different resource allocations. A cloud hosts
multiple applications on the VMs. Since the load of each VM
on a PM varies over time, a PM may become overloaded, i.e.,
the resource demand from its VMs is beyond its possessed
resource. Such load imbalance in a PM adversely affects the
performance of all the VMs (hence the applications) running
on the PM. Insufficient resources provision to customer ap-
plications also violates the Service Level Agreement (SLA).
An SLA is an agreement between a cloud customer and the
cloud service provider that guarantees the application perfor-
mance of the customer. In order to uphold the SLA, a cloud
service provider must prevent load imbalance using load bal-
ancing algorithms, in which overloaded PMs migrate their
VMs to underloaded PMs to release their excess loads.

Many load balancing algorithms [4, 11, 17, 20, 21, 23]
have been proposed that reactively perform VM migration
upon the occurrence of load imbalance or when a PM’s re-
source utilization reaches a threshold. However, these algo-
rithms only consider the current state of the system. Fixing a
load imbalance problem upon its occurrence not only gener-
ates a delay to achieve load balance but also cannot guaran-
tee the subsequent long-term load balance state, which may
lead to resource deficiency to cloud customer hence SLA vi-
olations. Also, the process of selecting migration VMs and
destination PMs is complex and generates high delay and
overhead.

Recently, some methods [7, 8, 10, 12, 18, 19] have been
proposed to predict VM resource demand in a short time
for sufficient resources provision or load balancing. In the
proactive load balancing, a PM can predict whether it will
be overloaded by predicting its VMs’ resource demands, and
moves out VMs when necessary. However, this method has
the following problems. First, a PM does not know which
VMs to migrate out. Additional operations of identifying
VMs to migrate bring about additional delay and overhead.
Second, it cannot maintain a long-term load balance be-
cause it only achieves load balance at the predicted time
spot. Third, it needs to build a Markov chain model and
calculate the transition probability matrix for each individ-
ual VM in the system, which generates prohibitive overhead
especially in a system with a large number of VMs.

What’s more, both reactive and proactive methods select
the destination PMs simply based on their current available
resources without considering their subsequent load status.

Effectively achieving the trade-off between the penalties
associated with SLA violations and cloud resource utiliza-
tion (hence revenue maximization) requires an algorithm
that i) helps proactively handle the potential load imbalance
problem by migrating VMs out of PMs that are about to be
overloaded in advance and also maintains its load balance
state for a long time, ii) generates low overhead and delay for
load balancing, and iii) maintains a long-term load balance
state for destination PMs after the VM migrations. However,
as far as we know, there are no load balancing algorithms
that can meet these requirements.

To meet this need, in this paper, we propose a proactive
Markov Decision Process (MDP)-based [14] load balancing
algorithm. However, there are two challenges in using the
MDP for the load balancing purpose.
• First, the MDP components must be well designed for low
overhead. An MDP consists of states (s), actions (a), tran-
sition probabilities (P) and rewards (R). After state s takes
action a, it has probability Pa(s, s

′) to transit to s′ and then
receives reward Ra(s, s

′). If an MDP considers an action as
moving out a specific VM, it needs to record the load state
transitions of a PM for moving out each VM in the system,
which generates a prohibitive cost and also is not accurate
due to time-varying VM load. To handle this challenge, our
designed MDP intelligently uses a PM load state as a state
and records the transitions between PM load states by mov-
ing out a VM in a specific load state.
• Second, the transition probabilities in the MDP must be
stable. Otherwise, the MDP cannot accurately provide guid-
ance for VM migration or the MDP must be updated very
frequently to keep the transition probabilities accurate. To
handle this issue, we have studied VM migrations based on
real traces, which confirms that the transition probabilities
are stable in our MDP.

We also design the rewarding policies, which encourages
a PM to transit to or maintain in the lightly loaded state and

discourages a PM to stay at the heavily loaded state. Thus,
when each PM attempts to maximize its rewards through
performing VM migration actions, it can find an optimal
action to transit to a lightly loaded state that will maintain
for a longer period of time. A similar MDP is also built
for determining destination PMs with the goal to not only
maintain their load balance states for a long time but also
fully utilize their resources.

Compared to previous reactive and proactive load balanc-
ing algorithms, our algorithm has several advantages. First,
it reduces the numbers of SLA violations by proactive load
balancing and long-term load balance maintenance. It also
reduces the load balancing overhead and delay by quickly
identifying VMs to migrate out based on MDP, which avoids
the need of additional operations of the VM identification. In
addition, it only needs to build one MDP that can be used by
all PMs in the system. Unlike the previous proactive load
balancing algorithms that focus on predicting VM or PM
load, our work is the first that focuses on providing guidance
on migration VM selection and destination PMs selection for
long-term load balance state maintenance.

The rest of the paper is organized as follows. Section 2
presents the related work. Section 3 presents the overview
and the detailed design of our MDP-based load balancing
algorithm. Section 4 presents the performance evaluation
of our algorithm compared with other load balancing algo-
rithms in trace driven simulations. Finally, Section 5 con-
cludes this paper with remarks on our future work.

2. Related Work
In recent years, many load balancing methods have been

proposed to avoid overloaded PMs in the clouds [4, 11, 17,
20, 21, 23]. These algorithms perform VM migration when
a PM’s resource utilization reaches a threshold. After migra-
tion VMs are selected, these methods select their destination
PMs simply based on their available resources at the deci-
sion time without considering their subsequent load status.
Sandpiper [23] carries out dynamic monitoring and hotspot
probing on PMs. It identifies overloaded PM, in which the
resource usage exceeds a certain threshold. For each over-
loaded PM, Sandpiper calculates the volume for each VM
in the PM, which is defined as the inverse reciprocate prod-
uct of the resources. Each VM has a volume-to-size ratio
(VSR), where the size is the memory footprint of the VM.
When selecting VMs to migrate from a hotpot PM, Sand-
piper considers VMs in decreasing order of VSRs, and at-
tempts to migrate the VM with the maximum VSR to the
PM with the least volume. Tarighi et al. [21] first formed a
decision matrix with different weights assigned to each spe-
cific resource of the VMs (or PMs). They then determined
the ideal solution by using maximum value for the bene-
fit criteria and minimum value for the cost criteria. Finally,
they calculated the Euclidean distance of each VMs (or PMs)
from the ideal solution to select the most suitable candidates.
Arzuaga et al. [4] used predetermined weights for resource

usage to measure virtualized server load. For VM migration,
they proposed to select the VM that yields the greatest im-
provement of the imbalance metric (determined by the ra-
tio of standard deviation over the mean) at its present state.
VectorDot [20] utilizes vectors to represent the multidimen-
sional resource requirements of VMs for migration. In order
to ensure successful migration and reduce migration cost, it
migrates VMs from an overloaded PM to a PM that has the
lowest vector product of item path vector and node path vec-
tor. Sallam et al. [17] proposed a migration policy consoli-
dated by a new elastic multi-objective optimization strategy
to evaluate different objectives (including migration cost) si-
multaneously. Chen et al. [11] proposed a resource intensity
aware load balancing method to dynamically assign different
weights to different resources according to their usage inten-
sity in the PM, which reduces the time and cost to achieve
load balance.

Many methods [7, 8, 10, 12, 18, 19] predict workloads of
PMs or VMs in order to ensure the sufficient provision for
the resource demands or for load balancing. They also select
the destination PMs simply based on their current available
resources. Gong et al. [12] proposed an online resource de-
mand prediction model, which uses a hybrid approach that
employs signature-driven and state-driven prediction algo-
rithms. Based on this work, CloudScale [19] performs pre-
diction error handling to achieve adaptive resource alloca-
tion. Using the predicted load, the system migrates VMs to
prevent overloading PMs before they become overloaded.
Sharma et al. [18] presented a replication and migration
scheme and focused on optimizing customer cost using lin-
ear programming. Bobroff et al. [8] introduced a dynamic
server migration and consolidation algorithm, which collects
resource demand data and uses a sliding window of this data
to predict resource demand in the next interval. Chandra
et al. [10] proposed a workload prediction algorithm using
auto-regression and histogram based methods. Beloglazov
et al. [7] introduced a Markov model for host overload de-
tection, which is used to decide when a VM should be mi-
grated from the host to satisfy a quality-of-service require-
ment, while maximizing the time between VM migrations.

However, the migration VM selection and destination PM
selection in the previous reactive and proactive load balanc-
ing algorithms cannot maintain a long-term system load bal-
ance state, which otherwise reduces not only SLA violations
(SLAV) but also the overhead and delay caused by load bal-
ancing execution. To overcome these problems, we propose
a method that uses MDP to let each PM calculate the opti-
mal action to perform with the goal of achieving long-term
load balance state. Though our algorithm shares similarity
with the previous algorithms in proactive prediction, those
algorithms focus on predicting VM or PM load, while our
algorithm focuses on providing PMs with guidance on mi-
gration VM selection for long-term load balance state main-
tenance. This work is non-trivial as it requires well-designed

components of MDP to constrain the overhead of MDP cre-
ation and maintenance and ensure the MDP’s stability.

3. MDP-based Load Balancing
3.1 Goals
The goal of our load balancing algorithm is to reduce SLAV
and meanwhile reduce the load balancing overhead and de-
lay. Usually SLAV comes from two parts: SLA Violation due
to Overutilization (SLAVO) and SLA Violation due to Mi-
grations (SLAVM) [6]. Thus, we need to guarantee sufficient
resource provisioning to cloud VMs and reduce the number
of VM migrations. To achieve the goals, we aim to prevent
heavily loaded state for each PM and maintain the load bal-
ance state for a long time. In this way, we not only reduce
SLAV but also reduce the times to execute the load balanc-
ing algorithm, hence reduce the number of VM migrations
and overhead (energy, CPU time, etc.) caused by load bal-
ancing execution. Also, we aim to design a load balancing
algorithm that generates low overhead and delay itself. Low
load balancing delay can reduce the delay for the system to
recover to the load balance state, hence also reduce SLAV.
Low load balancing overhead saves the resources for appli-
cations, which increases the revenue of the cloud provider.

3.2 Low overhead MDP creation and maintenance
To achieve the above-stated goals, we design an MDP model
that provides guidance on migration VM and destination PM
selections for long-term load balance state maintenance. An
MDP [14] requires a 4-tuple input (States (S), Actions (A),
Transition Probabilities (P), Rewards (R)). An MDP pro-
vides a general framework for finding an optimal action in a
stochastic environment, which maximizes the rewards from
the actions so that the outcomes follow the decision maker’s
desire. The overhead of both MDP creation and maintenance
(determined by the update frequency) must be low in order
to meet the low load balancing overhead requirement.

Unlike the previous VM load prediction models [7, 10,
12, 18, 19], we directly use the PM load state as the MDP
state, which enables a PM to directly check whether it is
heavily loaded or lightly loaded. The action set A should
be a set of VM migrations that a PM in a certain state can
perform.For an MDP, it is required that the set of actions A
do not change; otherwise, MDP has to be updated upon a
change. Declaring migration actions based on each individ-
ual VMs held by a PM will lead to the changes of action
set A and their associated transition probabilities. This is
because the VMs held by a PM may change and a PM could
hold any VM in the system due to VM migration, hence the
available actions of a PM may change. For example, if PM1

migrates VM1 to PM2, the action of migrating out VM1

needs to be deleted from PM1’s action set, and it needs to
be added to PM2’s action set. When the resource utilization
of VM2 in PM1 changes, the transition probabilities of the
action of migrating out VM2 to each transition state needs to
be updated. To solve this problem, we can define the action

set A as moving out each individual VM in the system. This
solution however generates a prohibitive cost considering
the huge number of VMs in the system. Also, the resource
utilization of each VM dynamically changes, which also ne-
cessitates the frequent updates of the associated transition
probabilities.

To achieve a stable and small action set and stable transi-
tion probabilities, we novelly define an action set as the mi-
gration of a VM with a specific load state (migration of VM-
state in short). The load state is defined as a combination
of the utilizations of different resources such as “CPU-high,
Mem-high”. We will explain the details of VM-state later on.
Therefore, all PMs in the cloud have the same action set A,
which includes the migrations of each VM-state.An MDP
state has a transition probability to transit to another state af-
ter performing an action. As the total number of VM-states
in the action set does not change regardless of a PM’s ac-
tions, the action set A does not change. Also, each VM-state
itself does not change, so the associated transition probabil-
ity for migrating this VM-state does not change. Thus, MDP
does not need to update with the migration of VM-states.

It is required that the transition probabilities in an MDP
must be stable. If the MDP creation approach cannot main-
tain stable transition probabilities, the MDP then cannot
function well or it needs a very frequent update in order
to provide correct guidance. To confirm whether our MDP
is stable, we have conducted an experimental study on real
traces. Before we present the results in Section 3.4, we first
introduce the definitions of the load states in Section 3.3.

3.3 Load State of PMs and VMs
In our load balancing algorithm, each PM selects VMs in
certain load states to migrate out in advance when they are
about to be overloaded, so that it can maintain its load bal-
ance state for a long time. This algorithm proactively avoids
overloading PMs in the cloud and continually maintains the
system in a load balance state in a long term while limits the
number of VM migrations. Therefore, a basic function of our
algorithm is to determine the load state of PMs and VMs to
represent PM-State and VM-State used in the MDP model.
PM-State represents the load state of a PM in the MDP
model, while VM-State is used to identify VMs with certain
resource utilization degrees to migrate in the actions of PMs.

In a cloud environment, there are different types of re-
sources (CPU, memory, I/O and network). Therefore, the
workloads of PMs and VMs are multi-attribute in terms of
different types of resources. In order to generalize our defi-
nitions, we use k to denote the number of resource types.

We assume there are N VMs running on M PMs in a
cloud. We regard time period as a series of time intervals
(τ) and use ti to denote the specific time at the end of the
i-th interval. We use lnkti to denote the demanded resource
amount (i.e., load) of the type-k resource in the n-th VM
at time ti. We use Lmk

ti and Cmk
ti to denote the load and

capacity of the type-k resource in the m-th PM at time ti,

respectively. Suppose the m-th PM has ni number of VMs,
then Lmk

ti =
∑ni

j=1 l
jk
ti .

We define the utilization of the type-k resource in the n-th
VM at time ti as

unk
ti = lnkti /cnkti , (1)

where lnkti and cnkti denote the load and assigned resource of
the n-th VM at time ti. We define the utilization of the type-
k resource in the m-th PM at time ti as

Umk
ti = Lmk

ti /Cmk
ti =

ni∑
j=1

ljkti /C
mk
ti . (2)

We use T k to denote the threshold for the utilization of the
type-k resource in a PM. The objective of our load balancing
algorithms is to let each PM maintain Umk

ti ≤ T k for each
type of resources. For simplicity, we omit k in the notation
unless we need to distinguish different types of resources.

In a PM, for a given resource, based on the resource uti-
lization (i.e., load) of the PM, we determine the utilization
level of this resource in this PM. We use three levels (high,
medium and low) as an example to explain our algorithm
in this paper, which can be easily extended to more levels.
Specifically, to perform level determination for type-k re-
source, we use Equation (3), in which T k

1 and T k
2 are two

thresholds used to distinguish low and medium, and medium
and high levels, respectively.⎧⎨

⎩
Low if Uk < T k

1

Medium if Uk ≥ T k
1 and Uk < T k

2

High if Uk ≥ T k
2

(3)

The state determination of VMs is performed in the same
manner by changing Uk in Equation (3) to uk. If the uti-
lization of at least one resource in a PM reaches the heavily
loaded threshold, this PM is heavily loaded. Only when the
utilizations of all resources in a PM do not reach the heavily
loaded threshold, this PM is lightly loaded.

Consider a set of n resources R={r1, r2,....rn} in the
cloud system and resource utilization levels L={High, Medium,
Low}. The total number of states of VMs or PMs equals
|L||R|; the Cartesian product of the two sets. The set of
states is S=R×L, where×means the combination of ri in
different resource utilization levels. For example, if we con-
sider two resources, R = {CPU, Mem}, a PM’s state can be
represented by the utilization degree of each resource such
as (CPU-high, Mem-high), (CPU-median, Mem-low), etc.
Then, there are 32=9 states for a VM or a PM as shown in
Figure 3(a).

3.4 Trace Study on the Stability of Our MDP
State set S is a set of PM resource utilization levels based
on Equation (3). As mentioned before, the transition proba-
bilities of an MDP must be stable. To confirm whether our
design of different MDP components can achieve the MDP
stability, in this section, we conduct an experiment, which
shows that the transition probability matrix remains stable
even when we slightly change threshold T k

i in Equation (3).
Therefore, we can properly set approximate T k

i to determine
the resource utilization level in MDP construction.

0.00
0.25
0.50
0.75
1.00
1.25

0.7 0.8
Threshold (T2

VM-high VM-med

T
ra

n
si

ti
o

n
 p

ro
b

a
b

il
it

y

0.00
0.25
0.50
0.75
1.00

0.7 0.8 0.9
Threshold (T2)

VM-high VM-med VM-low

T
ra

n
si

ti
o

n
 p

ro
b

a
b

il
it

y

(a) PM-State: high→high

0.00
0.25
0.50
0.75
1.00
1.25

0.7 0.8
Threshold (T2

VM-high VM-med

T
ra

n
si

ti
o

n
 p

ro
b

a
b

il
it

y

0.00
0.25
0.50
0.75
1.00

0.7 0.8 0.9
Threshold (T2)

VM-high VM-med VM-low

T
ra

n
si

ti
o

n
 p

ro
b

a
b

il
it

y

(b) PM-State: high→med.

0.00
0.25
0.50
0.75
1.00
1.25

0.7 0
Thresh

VM-high VM

T
ra

n
si

ti
o

n
 p

ro
b

a
b

il
it

y

0.00
0.25
0.50
0.75
1.00

0.7 0.8 0.9
Threshold (T2)

VM-high VM-med VM-low

T
ra

n
si

ti
o

n
 p

ro
b

a
b

il
it

y

(c) PM-State: high→low

0.00
0.25
0.50
0.75
1.00
1.25

0.7 0.8 0.9
Threshold (T2)

VM-high VM-med VM-

T
ra

n
si

ti
o

n
 p

ro
b

a
b

il
it

y

0.00
0.25
0.50
0.75
1.00

0.7 0.8 0.9
Threshold (T2)

VM-high VM-med VM-low

T
ra

n
si

ti
o

n
 p

ro
b

a
b

il
it

y

(d) PM-State: med.→high

0.00
0.25
0.50
0.75
1.00
1.25

0.7 0.8
Threshold (T2

VM-high VM-med

T
ra

n
si

ti
o

n
 p

ro
b

a
b

il
it

y

0.00
0.25
0.50
0.75
1.00

0.7 0.8 0.9
Threshold (T2)

VM-high VM-med VM-low

T
ra

n
si

ti
o

n
 p

ro
b

a
b

il
it

y

(e) PM-State: med.→med.

0.00
0.25
0.50
0.75
1.00
1.25

0.7 0.8
Threshold (T2

VM-high VM-med

T
ra

n
si

ti
o

n
 p

ro
b

a
b

il
it

y

0.00
0.25
0.50
0.75
1.00

0.7 0.8 0.9
Threshold (T2)

VM-high VM-med VM-low

T
ra

n
si

ti
o

n
 p

ro
b

a
b

il
it

y

(f) PM-State: med.→low

0.00
0.05
0.10
0.15
0.20
0.25

0.7 0.8 0.9
Threshold (T2)

VM-high VM-med VM-low
T

ra
n

si
ti

o
n

 p
ro

b
a

b
il

it
y

(g) PM-State: low→high

0.00
0.25
0.50
0.75
1.00
1.25

0.7 0.8
Threshold (T2

VM-high VM-med

T
ra

n
si

ti
o

n
 p

ro
b

a
b

il
it

y

0.00
0.25
0.50
0.75
1.00

0.7 0.8 0.9
Threshold (T2)

VM-high VM-med VM-low

T
ra

n
si

ti
o

n
 p

ro
b

a
b

il
it

y

(h) PM-State: low→med.

0.00
0.25
0.50
0.75
1.00
1.25

0.7 0.8
Threshold (T2

VM-high VM-med

T
ra

n
si

ti
o

n
 p

ro
b

a
b

il
it

y

0.00
0.25
0.50
0.75
1.00

0.7 0.8 0.9
Threshold (T2)

VM-high VM-med VM-low

T
ra

n
si

ti
o

n
 p

ro
b

a
b

il
it

y

(i) PM-State: low→low

Figure 1. Probability of state transitions of PM-high using PlanetLab trace.

0.00

0.25

0.50

0.75

1.00

0.7 0.8 0.9
Threshold (T2)

VM-high VM-med VM-low

T
ra

n
si

ti
o

n
 p

ro
b

a
b

il
it

y

(a) PM-State: high→high

0.00
0.25
0.50
0.75
1.00
1.25

0.7 0.8
Threshold (T2

VM-high VM-med

T
ra

n
si

ti
o

n
 p

ro
b

a
b

il
it

y

0.00
0.25
0.50
0.75
1.00

0.7 0.8 0.9
Threshold (T2)

VM-high VM-med VM-low

T
ra

n
si

ti
o

n
 p

ro
b

a
b

il
it

y

(b) PM-State: high→med.

0.00
0.25
0.50
0.75
1.00
1.25

0.7 0
Thresh

VM-high VM

T
ra

n
si

ti
o

n
 p

ro
b

a
b

il
it

y

0.00
0.25
0.50
0.75
1.00

0.7 0.8 0.9
Threshold (T2)

VM-high VM-med VM-low

T
ra

n
si

ti
o

n
 p

ro
b

a
b

il
it

y

(c) PM-State: high→low

0.00
0.25
0.50
0.75
1.00
1.25

0.7 0.8
Threshold (T2

VM-high VM-med

T
ra

n
si

ti
o

n
 p

ro
b

a
b

il
it

y

0.00
0.25
0.50
0.75
1.00

0.7 0.8 0.9
Threshold (T2)

VM-high VM-med VM-low

T
ra

n
si

ti
o

n
 p

ro
b

a
b

il
it

y

(d) PM-State: med.→high

0.00
0.25
0.50
0.75
1.00
1.25

0.7 0.8
Threshold (T2

VM-high VM-med

T
ra

n
si

ti
o

n
 p

ro
b

a
b

il
it

y

0.00
0.25
0.50
0.75
1.00

0.7 0.8 0.9
Threshold (T2)

VM-high VM-med VM-low

T
ra

n
si

ti
o

n
 p

ro
b

a
b

il
it

y

(e) PM-State: med.→med.

0.00
0.25
0.50
0.75
1.00
1.25

0.7 0.8 0.9
Threshold (T2)

VM-high VM-med VM-

T
ra

n
si

ti
o

n
 p

ro
b

a
b

il
it

y

0.00
0.25
0.50
0.75
1.00

0.7 0.8 0.9
Threshold (T2)

VM-high VM-med VM-low

T
ra

n
si

ti
o

n
 p

ro
b

a
b

il
it

y

(f) PM-State: med.→low

0.00
0.05
0.10
0.15
0.20
0.25

0.7 0.8 0.9
Threshold (T2)

VM-high VM-med VM-low

T
ra

n
si

ti
o

n
 p

ro
b

a
b

il
it

y

(g) PM-State: low→high

0.00
0.25
0.50
0.75
1.00
1.25

0.7 0.8 0.9
Threshold (T2)

VM-high VM-med VM-

T
ra

n
si

ti
o

n
 p

ro
b

a
b

il
it

y

0.00
0.25
0.50
0.75
1.00

0.7 0.8 0.9
Threshold (T2)

VM-high VM-med VM-low

T
ra

n
si

ti
o

n
 p

ro
b

a
b

il
it

y

(h) PM-State: low→med.

0.00
0.25
0.50
0.75
1.00
1.25

0.7 0.8 0.9
Threshold (T2)

VM-high VM-med VM-

T
ra

n
si

ti
o

n
 p

ro
b

a
b

il
it

y

0.00
0.25
0.50
0.75
1.00

0.7 0.8 0.9
Threshold (T2)

VM-high VM-med VM-low

T
ra

n
si

ti
o

n
 p

ro
b

a
b

il
it

y

(i) PM-State: low→low

Figure 2. Probability of state transitions of PM-high using Google Cluster trace.

In Equation (3), T k
2 is more important than T k

1 since
T k
2 is a threshold to determine the high utilization level,

which determines the heavily loaded state of a PM. Thus,
we conducted experiments with varying T k

2 values and kept
T k
1 =0.3. We used CloudSim [9] for the experiments and

compared the transition probability matrix obtained under
varying threshold T k

2 values. We used two traces in the
experiments: PlanetLab trace [9] and Google Cluster trace
[13]. The PlanetLab trace contains the CPU utilization of
VMs in PlanetLab every 5 minutes for 24 hours in 10 random
days in March and April 2011. The Google Cluster trace
records resource usage on a cluster of about 11000 machines
from May 2011 for 29 days. As there are a very large num-
ber of states when considering multiple resources, we focus
on the CPU resource in the experiments. In each test, we first
generated a random number of VMs ranging from 1 to 20,
and assigned these VMs to a PM. We then randomly selected
a VM in the PM to migrate out. We measured the PM-State

before and after VM migration based on the thresholds, and
the load state of the migrating VM. We repeated this pro-
cess for 100,000 times and calculated the transition probabil-
ities for different PM-state changes when migrating different
VM-states (e.g., the number of “high→medium” PM-state
transitions when migrating a medium VM-state).

We repeated the experiment 100 times and calculated
the transition probabilities. Figure 1 and Figure 2 show the
transition probabilities of PM state changes when using the
PlanetLab trace and the Google Cluster trace, respectively.
The error bars show the 99th and 1st percentiles among the
100 experiments. Each figure shows the results with differ-
ent T2 threshold values from 0.7, 0.8 to 0.9. In these fig-
ures, VM-high, VM-medium and VM-low represent that the
migration VM-state is high, medium and low, respectively.
We use PM-high, PM-medium and PM-low to represent a
PM in the high, medium and low state, respectively. For
example, Figure 1(c) and Figure 2(c) indicate that a PM-

CPU

MEM

Low Med High

Low

Med

High

s9 s6 s3

s8 s5 s2

s7 s4 s1

(a) PM states.

s1 s2

a1

a2

a2

a1

0.2

0.8
6�1

0.5

0.5

0.3

0.70.4
0.6

�5
8

�2
�3

4

2

(b) MDP model.

Figure 3. Example of a simple MDP.

high has a high probability (0.95-1 for PlanetLab trace and
1 for Google Cluster trace, respectively) to transit to state
low when it migrates VM-high. In Figure 1(i) and Figure
2(i), a PM-low always (near 1 probability) transits to state
low when it migrates VM-medium. It is interesting to see
that in Figure 1(g) and Figure 2(g), the probability that a
PM-low transits to state high when it migrates VM-low is
not 0, which means that a PM-low can transit to state high
even when it migrates out a VM, due to the fluctuation of
workload. We can observe that in each of these figures, the
probabilities are almost the same under varying threshold T2

with different traces. The error bars indicate that the prob-
abilities derived in different experiments have a very small
variation. Compared to the transition probabilities derived
from the PlanetLab trace in Figure 1, the absolute values of
the transition probabilities derived from the Google Cluster
trace in Figure 2 are slightly different, due to the difference
of the workload characteristics of these two trace. We can
still observe that in each of these three figures, the probabil-
ities are similar under varying threshold T2.

The results indicate that slightly varying threshold T2 will
not greatly affect the values of the probability transition ma-
trix. As a result, we can tune the threshold for determining
PM states as expected. In our MDP-based load balancing
algorithm, we use T1=0.3 and T2=0.8, which are reasonable
thresholds for the low and high resource utilization levels.

3.5 Overview of The MDP Model
The previous two sections indicate the feasibility of our pro-
posed MDP. Below, we present an overview of our MDP
model in this section, and then present the details of the
MDP components in the following sections. In our MDP-
based load balancing algorithm for a cloud system, the re-
source utilization degree of a PM is classified to a number of
levels. Unless otherwise specified, in this paper, we use three
levels: {high, medium and low} and two resources {CPU,
Mem} as an example for the MDP creation. Our method
can be easily extended to more levels and more resources.
Specifically, we define the 4 elements of MDP in our MDP-
based load balancing algorithm as follows:
1. S is a finite set of states {(CPU-high, Mem-high), (CPU-

medium, Mem-low), ...}, which are multi-variate classi-
fied representation of current resource utilization of a PM
(PM-State).

2. A is a set of actions. An action means a migration of VM
in a certain state (VM-State) or no migration. VM-State
is represented in the same manner as PM-State.

3. Pa(s, s
′)=Pr(st+1=s′|st=s, at=a) is the probability that

action a∈A in state s∈S at time t will lead to state s′∈S
at time t+1. The transition probabilities are determined
based on the trace of a given cloud system.

4. Ra(s, s
′) is an immediate reward given after transition

to state s′ from state s with the transition probability
Pa(s, s

′) by taking action a.
Figure 3(b) illustrates the transition model of a simple

MDP with two states and two actions. The 3×3 table in
Figure 3(a) represents all possible PM states. The two circles
with s1 and s2 indicate the two states of a PM. The four
smaller circles with a1 and a2 mean an action of migrating
out a VM in a certain VM-State or no migration. The fraction
number along the arrow from state si to state sj going
through ai means the probability that si will transit to sj
after taking action ai (Pa(si, sj)), and the number along the
dashed arrow represents the reward associated with the state
transition from si to sj after taking action ai (Ra(si, sj)). As
shown in the figure, for a PM in state s1 (CPU-high, Mem-
high), if it takes action a1, it has a probability of 0.2 to stay
in s1 and receive reward -1, and has a probability of 0.8 to
transit to s2 (CPU-high, Mem-med) and receive reward 6.

The transition probability matrix for a given system is ob-
tained by studying the trace information of the system. We
will show in Section 3.6 that the final constructed transition
probability matrix remains stable during a certain period of
time, hence does not require frequent recalculation of the
probabilities in the MDP. In the set of states (S), some states
mean that the PM is heavily loaded while others mean the
PM is lightly loaded. In the MDP, a PM identifies the action
with the highest expected reward and takes this action to
maximize its earned reward, which enables it to transmit to
or remain at the lightly loaded state for a long time.

PM 1

VM 1
CPU : 90%
Mem : 90%

CPU-high
Mem-med

VM 2
CPU : 70%
Mem : 30%

VM 3
CPU : 70%
Mem : 20%

VM 4
CPU : 50%
Mem : 50%

PM 2 PM 3
CPU-high
Mem-med

CPU-high
Mem-med

Figure 4. PM and VM state
determination in a cloud.

0.00

0.25

0.50

0.75

1.00

25 50 75
The length of simulations (hr)

VM-high VM-med VM-low

T
ra

n
si

ti
o

n
 p

ro
b

a
b

ili
ty

Figure 5. Transition proba-
bility vs. simulation time.

For this purpose, we design the reward system in the
MDP that assigns a positive reward for transiting to or main-
taining at a lightly loaded state and a negative reward for
maintaining a heavily loaded state. In Section 3.6, we present
our reward system, which encourages a PM to find the opti-
mal action to perform to attain and maintain a lightly loaded
state for a longer time. As a result, each PM is in a lightly
loaded state with high probability in a long term and the total
number of VM migrations in the system is reduced.

aH aH aH
vH vM vL vH vM vL vH vM vL

bH 0.01 0.13 0.59 0.03 0.65 0.39 0.96 0.22 0.02
bM 0.00 0.02 0.16 0.06 0.21 0.65 0.94 0.77 0.19
bL 0.00 0.00 0.01 0.00 0.00 0.08 0.00 1.00 0.91

Table 1. Probabilities with threshold T2 = 0.8.
3.6 Construction and Usage of MDP in a Cloud
In this section, we present the construction of an MDP in a
cloud. As indicated earlier, the MDP needs 4-tuple variables:
States S, Actions A, Transition Probabilities P and Rewards
R. We explain each variable in the following.

States (S) and Actions (A): We explained “States”
and “Actions” in Section 3.3. As mentioned previously,
S=R×L. The action set A consists of (|L||R|)+1 elements
and “1” represents “no action”. In our MDP, no matter if in-
coming VM changes the state of a PM or the loads of VMs
currently running on a PM change, the state set and action
set will not change. The MDP is able to find an optimal ac-
tion that achieves load balance state and sustains this state
for a longer time period.

Using the state determination method introduced in Sec-
tion 3.3, a PM determines its own PM-State. It then identifies
its position in the MDP and finds the actions it needs to take
to transit to or remain at the lightly loaded state. To migrate
out VMs to become or remain lightly loaded, a PM needs to
determine the VM-State of each of its VM. Then, it chooses
VMs in a certain VM-State to take the actions.

Consider the example shown in Figure 4. Based on Equa-
tion (3) with T1=0.3 and T2=0.8, we can determine the states
and actions. PM1’s state is (CPU-high, Mem-medium),
PM2’s state is (CPU-medium, Mem-medium) and PM3’s
state is (CPU-low, Mem-low). VM1’s state is (CPU-high,
Mem-high), the state of VM2 and VM3 is (CPU-high, Mem-
low), and VM4’s state is (CPU-medium, Mem-medium).
Moving out a VM in one of these VM-states is an available
action that this PM can carry out. With the reward system,
the MDP-based load balancing algorithm motivates PMs to
choose actions to become or remain lightly loaded while re-
ducing VM migrations and maintaining load balance state
for a longer time.

Transition Probabilities (P): For a PM in state si∈S,
after it performs action a∈A, it will transit to another state
sj∈S or remain in the same state. We need to determine the
probability of transiting to each of other states after taking
each action. The transition probability should be stable be-
cause a change in the transition probability would result in
new transition policy if the change in value is too large.

The cloud uses the information from the trace of the
state changes and VM migrations to determine the transi-
tion probability matrix. In the previous load balancing algo-
rithms, a central server monitors the states of PMs and deter-
mines the VM migrations between PMs. We let this central
server keep track of the VM-state of each migrated VM and
the PM state changes upon the VM migration. Based on this
information, the central server can calculate the transition

probability from one state to another state upon an action.
For example, in the 1-resource environment, for action a∈A,
if the transition high→high occurs 5 times, high→medium
occurs 4 times, and high→low occurs 1 time, then the tran-
sition probability in performing action a when in state high
is 0.5, 0.4, 0.1 to the high, medium, low state, respectively.

We conduct a similar experiment as in Section 3.4. Ta-
ble 3.5 shows the probabilities of PM state changes when
T2=0.8. bH , bM and bL represent the high, medium and low
state before migration, respectively; aH , aM and aL repre-
sent the high, medium and low state after migration, respec-
tively; and vH , vM and vL represent actions of migrating
VM in state high, medium and low respectively. For a given
“state” before migration and specific actions, the sum of the
probabilities that transit to any states (aH , aM and aL) is 1.
Notice that a PM in state low has a nearly zero probability to
change to any states when taking action vH (migrating VM
in state high). Table 3.5 will be used in our experiments in
Section 4.

We also carried out the experiment with varying simu-
lation time to study the stability of the transition probabili-
ties. Figure 5 shows the results of the experiments with trace
length of 25, 50 and 75 hours. We selected the transition
probabilities of PM state changes of high→medium after mi-
grating VM-high, VM-medium and VM-low as representa-
tive examples to show in the figure. We see that the transition
probability is stable regardless of the length of trace. The
probability of PM high→medium transitions when migrat-
ing VM-high in the 25 hour simulation is zero. Though this
probability is nonzero in the longer simulation experiments,
its magnitude is still very close to zero, which means that the
probability matrix is relatively stable.

Rewards (R): Rewards are incentives that are given to a
PM after performing action a∈A. By encouraging each PM
to maximize its received rewards, the reward system aims
to constantly avoid heavily loaded state for each PM while
minimizing the number of VM migrations; that is, maintain
a system load balance state for a long time and minimize
load balancing overhead. To achieve this goal, we need to
carefully assign rewards for actions. For example, rewarding
a PM for each migration might result in continuous migra-
tions of a PM, which generates a high overhead. To achieve
the load balance state, each overloaded PM should be en-
couraged to change to lightly loaded PM. Thus, the system
rewards heavily loaded PM positively for performing actions
that lead it to a lightly loaded state. Also, PMs should be
rewarded to maintain their lightly loaded state. In order to
prevent under-utilization of resources, the reward for main-
taining the medium state is greater than maintaining the low
state. We present the details of the reward policies for tran-
siting from state s to state s′ below. A PM receives a reward
when the state of one of its resources is changed. Note that
the rewards are for each type of resources. We consider the
following two cases.

1. Reward for a resource utilization transiting from high
state to another state (λ):
(a) Positive reward for a transition to a low (c) or medium

(b) state.
(b) Negative reward for a transition to a high state (d).
(c) The reward for a transition to a medium state is higher

than to a low state (b > c).
2. Reward for performing no action (γ):

(a) Reward for performing no action in a low (c′) or
medium state (b′).

(b) Reward for no action in a low state is higher than in a
medium state (c′ > b′).

(c) Negative reward for performing no action in a high
state (d′).

Let RH be the subset of resources in R of a PM whose
resource utilizations are high after action a. Similarly, we
let RL and RM be the resource subsets whose resource
utilizations after action a are low and medium, respectively.
Thus, we have, R = RL ∪RM ∪RH . (4)
The first reward is λ, which is the reward for transiting to
another state. This reward encourages each PM to transit
each of the resources into a lower loaded state, thus helping
to achieve load balance state. For a PM with R resources,
after performing an action a, the reward λ equals:

λ =
∏

r∈RH

d+
∏

r∈RM

b+
∏

r∈RL

c, ∀r ∈ R, (5)

where d is a negative reward and b and c are non-negative
reward and d < c < b.

Let’s consider reward for no action γ. This reward en-
courages PM to maintain a low or medium state for a longer
period of time. When a PM performs no action, it is rewarded
for performing no action. The reward is dependent on the
state of each of the PM’s resources. The reward γ is calcu-
lated as follows and c′ > b′ > d′.

γ =
∑

r∈RH

d′ +
∑

r∈RM

b′ +
∑

r∈RL

c′, ∀r ∈ R

As a result, the total reward earned by a PM is the sum of
the two rewards λ and γ.

Ra(s, s
′) = λ+ γ

Each PM needs to find the optimal actions, denoted by
π(s) (a∈A) to maximize its earned rewards, i.e., to reach or
remain low or medium state for a long time period. In the
next section, we explain how to obtain action set π(s).

Optimal Action Determination based on MDP: The
goal of the optimal action determination in an MDP is to
find an action for each specific state that maximizes the
cumulative function of expected rewards:

∞∑
t=0

Rat(st, st+1),

where t is a sequence number, and at is the action taken at
t. The algorithm to calculate this optimal policy requires the
storage for two arrays indexed by state: value V , which con-
tains the reward associated with a state, and policy π which

contains actions for the states. The optimal policy for an
MDP is a collection of actions performed in each state that
maximize the reward, which in return makes a PM attain a
lightly loaded state and sustains for a longer period of time.
At the end of the algorithm, π contains the most suitable ac-
tion for each state to take that would result in the maximum
value V for that specific state, and V (s) will contain the sum
of the rewards to be earned (on average) by following the ac-
tion from state s. The algorithm has the following two steps,
which are repeated in some order for all the states until no
further changes take place:

π(si) = argmax
a

{
∑
j

(Pa(si, sj)(R(si, sj)+V (sj))} (6)

V (si) =
∑
j

Pπ(si)(si, sj)(Rπ(si)(si, sj) + V (si)) (7)

Algorithm 1 The iterative value iteration algorithm.
Require: T , a transition probability matrix
Require: R, a reward matrix.
Ensure: Policy π

1: V ← 0, Vnew ← R
2: while max|V (si)− Vnew(si)| ≥ e do
3: V ← Vnew

4: for all state i in S do
5: Vnew(si) ← R(si) +maxa

∑
j P (si, a, sj)V (sj)

6: end for
7: end while
8: for all si in S do
9: π∗(si) = argmaxa

∑
j P (si, a, sj)V (sj)

10: π = π + π∗(si)
11: end for
12: return π

Equation (6) obtains the optimal policy. In Equation (6),
V is obtained by using Equation (7) for each state si∈S.
Specifically, in order to determine the optimal policy, we
apply the value-iteration algorithm [5], which is a dynamic
algorithm. The aim of this algorithm is to find the max
value V (si) of each state and corresponding action π(si),
until we observe convergence in values for all states for
each successive iterations. Thus, using this value-iteration
algorithm, we can obtain actions for the states that result in
the maximum rewards for that state. Using the pair of action
and value of each state, we can calculate the optimal policy
π using Equation (6).

Algorithm 1 shows the pseudo code for the value-iteration
algorithm. The algorithm first assigns zero reward to V (si)
for all si (Line 1) and repeatedly update V (si) based on
Equation (7) and Equation (6) (Line 2 to Line 7), and the
corresponding optimal policy π(si) (Line 8 to Line 11). In
the algorithm, R(si) is calculated by

R(si) =
∑
j

Pπ(si)(si, sj)Rπ(si)(si, sj). (8)

When we observe convergence in values for all states, that is
max|V (si) − Vnew(si)| ≥ e (Line 3), we can assume that
V (si) is close to its maximum value and the corresponding
π(si) is the optimal policy we want.

0
10
20
30
40
50
60

0 10 20 30
Rounds

MDP
MDP*
Sandpiper
CloudScale

C
u

m
u

la
ti

ve
 n

u
m

b
e

r

o
f

m
ig

ra
ti

o
n

s

(a) Cumulative # of VM migrations.

0
10
20
30
40
50
60

To
ta

l n
u

m
b

e
r

o
f

m
ig

ra
ti

o
n

s

Load balancing algorithms

MDP
MDP*
Sandpiper
CloudScale

(b) Total # of VM migrations.

0

10

20

30

40

0 10 20 30

Cu
m

ul
at

iv
e

nu
m

be
r

of
 o

ve
rl

oa
de

d
PM

s

Rounds

MDP
MDP*
Sandpiper
CloudScale

(c) Cumulative # of overloaded PMs.

0

10

20

30

40

50

To
ta

l n
u

m
b

e
r

o
f

o
ve

rl
o

ad
e

d
 P

M
s

Load balancing algorithms

MDP
MDP*
Sandpiper
CloudScale

(d) Total # of overloaded PMs.

Figure 6. Performance using the PlanetLab trace.

0

10

20

30

40

0 10 20 30C
u

m
u

la
ti

ve
 n

u
m

b
e

r

o
f

m
ig

ra
ti

o
n

s

Rounds

MDP
MDP*
Sandpiper
CloudScale

(a) Cumulative # of VM migrations.

0

10

20

30

40

To
ta

l n
u

m
b

e
r

o
f

m
ig

ra
ti

o
n

s

Load balancing algorithms

MDP
MDP*
Sandpiper
CloudScale

(b) Total # of VM migrations.

0

5

10

15

20

25

0 10 20 30

Cu
m

ul
at

iv
e

nu
m

be
r

of

ov
er

lo
ad

ed
 P

M
s

Rounds

MDP
MDP*
Sandpiper
CloudScale

(c) Cumulative # of overloaded PMs.

0

10

20

30

40

To
ta

l n
u

m
b

e
r

o
f

o
ve

rl
o

ad
e

d
 P

M
s

Load balancing algorithms

MDP
MDP*
Sandpiper
CloudScale

(d) Total # of overloaded PMs.

Figure 7. Performance using the Google Cluster trace.
3.7 Destination PM Selection
After a PM identifies the VMs to migrate out, the destination
PMs need to be determined to host these migration VMs. In
previous methods, a central server identifies the destination
PMs where the identified VMs can migrate to [21–23]. For
example, Sandpiper [22] first defines volume for PMs as
volume= (1/(1−Ucpu))∗(1/(1−Unet))∗(1/(1−Umem)),
where U is resource utilization, and then selects the PM
with the least volume as the destination. A PM can be a
VM’s destination PM if placing the VM at the PM does
not violate the multidimensional capacities. Then, the central
server identifies and distributes the PM destinations for each
heavily loaded PM in the system. However, though such a
method can ensure that the destination PM is not overloaded
upon accepting the migration VM, it cannot ensure that this
load balance status can sustain for a long time.

In order to maintain a long-term load balance states of
these destination PMs while fully utilizing PM resources,
we again develop a similar MDP-based model to determine
the destination PMs. A central server runs the MDP and se-
lects the PMs that are most suitable to accept migration VMs
based on VM-states. Compared to the previous MDP model,
this new MDP model has the same state set S. Its action set
A is accepting a VM in a certain VM-State or not accepting
any VM. Recall that by defining such an action set, we can
ensure that A does not change, which is required by MDP.
The transition probability Pa(si, sj) is defined as the proba-
bility of PM in state si transiting to state sj after performing
action a∈A. This MDP model uses the information from the
trace of state changes when PM accepts VMs to build the
transition probability matrix. The central server keeps track
of the resource utilization status of the PMs when they accept
VMs or take no action. The method introduced in Section 3.6
is used for the probability calculation.

The rewards given to a PM after performing action a∈A
should encourage PMs to accept VMs while avoiding heavy
state in a long term. Accordingly, the reward system is de-
signed as follows for the state transition of each resource:

1. Positive reward for a transition to a low/medium state.
2. Negative reward for a transition to a high state.
3. The reward for a transition to a medium state is higher

than to a low state.
4. The reward for actions of accepting a VM in different

VM-states follows: high>medium>low>no action.

For a given migration VM, the central server can identify the
most appropriate destination PMs based on the MDP. Better
options from these PMs can be further identified based on
additional consideration factors such as VM communication
cost and migration distance [11].

4. Performance Evaluation
In this section, we conducted trace-driven experiments on
CloudSim [9] to evaluate the performance of our proposed
MDP-based load balancing algorithm in a two-resource en-
vironment (i.e., CPU and Mem). We used the VM utiliza-
tion trace from PlanetLab [9] and Google Cluster [13] to
generate VM workload to determine the transition probabil-
ity matrix in our MDP model. We implement two versions
of our MDP load balancing algorithm, represented by MDP
and MDP*. In order to solely show the advantage of MDP
on VM selection, MDP uses our MDP model for identify-
ing VMs to migrate and adopts the PM selection algorithm
as Sandpiper (Section 3.7). MDP* uses our MDP model for
both VM selection and destination PM selection. We com-
pared MDP and MDP* with Sandpiper [23] and CloudScale
[19] in terms of the number of VM migrations, the num-
ber of overloaded PMs, and time and resource consumptions.
We use Sandpiper to represent reactive load balancing algo-

Server CPU uti. 0% 20% 40% 60% 80% 100%
HP ProLiant G4 86 92.6 99.5 106 112 117

Table 2. Energy consumption for different CPU utilizations [6].

rithms and use CloudScale to represent proactive load bal-
ancing algorithms.

We simulated the cloud datacenter with 100 PMs hosting
1000 VMs. The PMs are modeled from commercial prod-
uct HP ProLiant ML110 G4 servers (1860 MIPS CPU, 4GB
memory) and the VMs are modeled from EC2 micro in-
stance (0.5 EC2 compute unit, 0.633 GB memory, which is
equivalent to 500 MIPS CPU and 613 MB memory). The
resource utilization trace from PlanetLab VMs and Google
Cluster VMs are used to drive the VM resource utilizations
in the simulation. We repeatedly carried out each experiment
for 20 times and reported the results. At the beginning, the
VMs are randomly allocated to the PMs. We used this VM-
PM mapping for different load blanching algorithms in each
experiment to have fair comparison. When the simulation
is started, the simulator updates the resource utilization sta-
tus of all the PMs in the datacenter every 300 seconds, and
records the number of VM migrations and the number of
overloaded PMs (the occurrence of overloaded PMs) during
that period. In each experiment round, each PM conducts
load balancing once and waits for 300 seconds before the
next load balancing execution. We used T1=0.3 and T2=0.8
as the resource utilization thresholds for both CPU and mem-
ory usage. Sandpiper and CloudScale perform VM migra-
tions whenever a PM is detected overloaded (i.e., either CPU
or memory utilization exceeds 0.8) and select the destination
PM based on their corresponding PM selection algorithms.
In MDP and MDP*, each PM chooses the action to perform
that results in the maximal expected rewards.

4.1 Introduction of Two Metrics
We first introduce two performance metrics. One metric is
the total energy consumption of the PMs of a cloud datacen-
ter caused by the application workloads. Energy consump-
tion by PMs in datacenters is mostly determined by the CPU,
memory, disk storage, power supplies and cooling systems
[16], and the work in [6] gave the total energy consumption
amount based on the CPU utilization. The configuration and
power consumption characteristics of our used servers, HP
ProLiant ML110 G4 (Intel Xeon 3040, 2 cores×1860 MHz,
4 GB), is shown in Table 4. Using this table, we calculate and
compare the energy consumption of different algorithms.

The other important metric to evaluate the performance
of the load balancing algorithms in cloud datacenters is
SLAs [8]. SLA violation (SLAV) is determined by the per-
centage of time during which the active hosts have expe-
rienced a CPU utilization of 100% (SLAVO) and perfor-
mance degradation due to VM migration (SLAVM) [6].
SLAVO= 1

N

∑N
i=1

Tsi

Tai
, and SLAVM= 1

M

∑M
j=1

Cdj

Crj
. Here,

N is the number of active PMs, Tsi is the total time during

which PM i has experienced CPU utilization of 100%, and
Tai

is the total time during which PM i is serving VMs. M
is the number of VMs, Cdj

is an estimate of the performance
degradation of the VM j caused by migration (we use 10%
as in [6]), and Crj is the total CPU capacity requested by
VM j during its lifetime. We measured SLAV as the product
of SLAVO and SLAVM to evaluate the algorithms.

0

20

40

60

80

1.5 2 2.5

To
tl

a
l n

u
m

b
e

r
o

f
m

ig
ra

ti
o

n
s

Load (x original load in trace)

MDP MDP*
Sandpiper CloudScale

(a) The number of VM migrations
with increasing workload ratio.

0
10
20
30
40
50
60

1.5 2 2.5

To
ta

l n
u

m
b

e
r

o
f

o
ve

rl
o

a
d

e
d

 P
M

s

Load (x original load in trace)

MDP MDP*
Sandpiper CloudScale

(b) The number of overloaded PMs
with increasing workload ratio.

Figure 8. Performance with the PlanetLab trace.

0
10
20
30
40
50
60

1.5 2 2.5

To
tl

a
l n

u
m

b
e

r
o

f
m

ig
ra

ti
o

n
s

Load (x original load in trace)

MDP MDP*
Sandpiper CloudScale

(a) The number of VM migrations
with increasing workload ratio.

0
10
20
30
40
50

1.5 2 2.5

To
ta

l n
u

m
b

e
r

o
f

o
ve

rl
o

a
d

e
d

 P
M

s

Load (x original load in trace)

MDP MDP*
Sandpiper CloudScale

(b) The number of overloaded PMs
with increasing workload ratio.

Figure 9. Performance with the Google Cluster trace.

4.2 Experimental Results
Figure 6 and Figure 7 show the performance of MDP, MDP*,
Sandpiper and CloudScale with the PlanetLab trace and
Google Cluster trace, respectively. Figure 6(a) and Figure
7(a) show the cumulative number of migrations over the
rounds. Both results follow MDP*<MDP<Sandpiper<Clo-
udScale. MDP and MDP* outperform Sandpiper and Cloud-
Scale because each PM can find the best actions to per-
form to keep a long-term load balance state while triggering
a smaller number of VM migrations. Compared to MDP,
MDP* further reduces the number of VM migrations due to
the reason that it additionally selects the most suitable des-
tination PMs for VM migrations based on MDP model, and
hence results in a long-term load balance state, which helps
reduce the number of VM migrations. CloudScale generates
a larger number of VM migrations than Sandpiper in each
round because CloudScale migrates VMs not only for a cor-
rectly predicted overloaded PM but also for an incorrectly
predicted overloaded PM, but Sandpiper only migrates VMs
for occurred overloaded PMs. Figure 6(b) and Figure 7(b)
show the median, the 10th and 90th percentiles of the total
number of VM migrations in the experiments. Due to the
random VM to PM mapping at the beginning of simulations,
the number of migrations varies in different simulations. Sta-
tistically, MDP* generates fewer VM migrations than MDP,
MDP generates fewer VM migrations than Sandpiper, and

0.0
1.0
2.0
3.0
4.0
5.0

2.5 3 3.5

C
P

U
 t

im
e

 (
m

s)

VM/PM ratio

MDP
MDP*
Sandpiper
CloudScale

(a) Total time.

0.0
0.2
0.4
0.6
0.8

C
P

U
 t

im
e

 (
m

s)
 MDP

MDP*
Sandpiper
CloudScale

(b) CPU time breakdown (ratio=2.5).

0.0

0.5

1.0

1.5

C
P

U
 t

im
e

 (
m

s)
 MDP

MDP*
Sandpiper
CloudScale

(c) CPU time breakdown (ratio=3).

0.0
0.5
1.0
1.5
2.0
2.5

C
P

U
 t

im
e

 (
m

s)
 MDP

MDP*
Sandpiper
CloudScale

(d) CPU time breakdown (ratio=3.5).

Figure 10. Comparison of CPU time consumption by different methods to achieve load balance.
Sandpiper generates fewer VM migrations than CloudScale
due to the same reasons mentioned before. These results
confirm that MDP and MDP* are advantageous in main-
taining a long-term load balance state and minimizing the
number of VM migrations, hence reducing load balancing
overhead. Also, our MDP model is effective in both migra-
tion VM selection and destination PM selection to maintain
a long-term load balance state.

Next, we measure the number of overloaded PMs, which
indicates the effectiveness of load balancing algorithms.
Figure 6(c) and Figure 7(c) show the cumulative num-
ber of overloaded PMs over rounds. MDP and MDP*
generate a smaller number of overloaded PMs in each
round than CloudScale and Sandpiper. This is because
the MDP algorithm incentivizes the PMs to perform opti-
mal VM migration actions to maintain a system load bal-
ance state for a longer time. MDP* outperforms MDP with
fewer overloaded PMs since it further uses the MDP model
for the destination PM selection to maintain a long-term
load balance state. CloudScale produces fewer overloaded
PMs than Sandpiper because its predicted overloaded PMs
migrate VMs out before they become overloaded, while
Sandpiper conducts VM migrations upon the PM over-
load occurrence. Figure 6(d) and Figure 7(d) show the
median, the 10th and 90th percentiles of the total number
of overloaded PMs in the experiments. The results follow
MDP*<MDP<CloudScale<Sandpiper due to the same rea-
sons indicated previously.

We then increased the VM’s workload to 1.5, 2 and
2.5 times of its original workload in the trace to study
the performance under various workloads. For each work-
load level, we repeated the simulation for 20 times. Fig-
ure 8 and Figure 9 show the experimental results with the
PlanetLab trace and Google Cluster trace, respectively. Fig-
ure 8(a) and Figure 9(a) show the median, the 10th and
90th percentiles of the number of VM migrations of the
three methods under different workload ratios. The num-
ber of VM migrations increases as the workload ratio in-
creases. Within each workload ratio, the number of VM
migrations follows MDP*<MDP<Sandpiper<CloudScale,
which is consistent with the results in Figure 6(b) and Fig-
ure 7(b) due to the same reasons as explained before. Fig-
ure 8(b) and Figure 9(b) show the median, the 10th and
90th percentiles of the number of overloaded PMs of the
three methods with different workload ratios. The number of

overloaded PMs increases with workload ratio, and follows
MDP*<MDP<CloudScale<Sandpiper within each work-
load ratio. The results are consistent with Figure 6(d) and
Figure 7(d) due to the same reasons. Thus, MDP and MDP*
perform better then Sandpiper and CloudScale in terms of
the number of VM migrations and the number of overloaded
PMs in different workloads.

The CPU time consumption for load balancing consists
of the time spent on system monitoring, the time identifying
VMs to migrate, the time to determine destination PMs for
VMs and the time for VM migrations. The system monitor-
ing time refers to the CPU time spent on checking whether
there are overloaded PMs and determining whether VM
migration is necessary in each round. Figure 10(a) shows
the median, the 10th and 90th percentiles of the CPU time
consumption to achieve load balance in the four methods
under different VM/PM ratios. We see that the CPU time
increases as the ratio increases for all four methods. As
the ratio increases, the system needs more CPU resource
to predict and monitor the workload status of more VMs.
For each VM/PM ratio, the CPU time consumption fol-
lows MDP*<MDP<Sandpiper<CloudScale. CloudScale
consumes more CPU time than the other methods due to
two reasons. First, CloudScale needs to predict the load of
each VM and hence needs more CPU time. Second, Cloud-
Scale has relatively more VM migrations, which consumes
more VM migration CPU time. MDP consumes less time
than Sandpiper since it can quickly make VM migration de-
cisions and has a smaller number of VM migrations. MDP*
consumes the least CPU time since it can quickly select both
migration VMs and destination PMs.

In order to give a thorough comparison between the four
methods, we broke down the CPU time to different parts as
shown in Figure 10(b), Figure 10(c) and Figure 10(d) cor-
responding to three VM/PM ratios. The maintenance time
refers to the CPU time needed to determine when to perform
VM migrations. In MDP and MDP*, each PM only needs
to refer to the optimal policy π and hence they require less
CPU time. Sandpiper consumes more CPU time in main-
tenance than MDP and MDP* since it needs to calculate
the volume [23] of each PM to check the load status of the
PMs. CloudScale consumes much more CPU time since it
needs to predict the workload status of each VM and also
predict the PM workload status to determine whether VM
migrations are needed.

9.0

10.0

11.0

12.0

13.0

M
e

m
o

ry
 (

M
b

)

Load balancing algorithms

MDP
MDP*
Sandpiper
CloudScale

Figure 11. Memory consu-
mption (ratio=3).

0.0
1.0
2.0
3.0
4.0
5.0

2.5 3 3.5
E

n
e

rg
y

(k
W

h
)

VM/PM ratio

MDP MDP*
Sandpiper CloudScale

Figure 12. Energy consum-
ption in algorithms.

The time to identify VMs to migrate refers to the CPU
time needed to determine which VMs to migrate when a
PM is overloaded. MDP and MDP* refer to the optimal pol-
icy π and quickly select VM to migrate in each round, and
hence need little CPU time, while Sandpiper needs a rela-
tively long CPU time to calculate the volume-to-size (VSR)
ratio of each VM. Sandpiper consumes slightly less CPU
time than CloudScale because Sandpiper does not need to
predict each VM workload and it selects fewer VMs than
CloudScale due to fewer VM migrations.

The time to determine destination PMs refers to the CPU
time needed to determine destination PMs where the se-
lected VMs can migrate to. MDP* quickly selects destina-
tion PMs by referring to the optimal policy π derived from
the MDP model and hence needs the least CPU time. MDP
and Sandpiper have the same PM selection algorithm, so
their CPU time is dominated by the number of VMs that
need to migrate. MDP consumes a slightly less CPU time
than Sandpiper due to its fewer VM migrations. CloudScale
uses a greedy algorithm to find the least loaded destina-
tion PM and hence consumes less CPU time than MDP and
Sandpiper.

Figure 11 shows the median, the 10th and 90th percentiles
of the memory utilization of the four methods when the
VM/PM ratio equals 3. We see that MDP, MDP* and Sand-
piper consume similar amount of memory resource. Cloud-
Scale consumes much more memory since it needs to store a
40×40 probability transition matrix as indicated in [12] for
each VM for workload prediction and it also has a higher
number of VM migrations.

We then compare energy consumption of the four differ-
ent load balancing algorithms. We ran each experiment for
one hour and measured the total energy consumption of dif-
ferent algorithms. Figure 12 shows the median, the 10th and

0

0.02

0.04

0.06

0.08

SL
A

V
 (

%
)

Load balancing algorithms

MDP
MDP*
Sandpiper
CloudScale

Figure 13. The SLAV metric.

90th percentiles of the
total amount of the
energy consumption
among total 10 experi-
ments. The idle energy
consumption is mea-
sured when the PM is
idle and stays at its low-
est power state, which
has a value about 2.2kWh. The energy consumption fol-
lows MDP*<MDP<Sandpiper<CloudScale for three rea-
sons. First, MDP* and MDP can maintain the system in a

long-term load balance state and hence free the PMs from
busily calculating (i.e., determining VMs to migrate and
selecting destination PMs). Second, MDP* and MDP re-
duce the number of VM migrations and hence avoid addi-
tional energy consumption of the system. Third, MDP* and
MDP can more quickly select migration VMs and destina-
tion PMs, hence consume less CPU time than the other two
algorithms. The result that MDP* consumes less energy than
MDP verifies the effectiveness of our MDP-base algorithm
in destination PM selection.

Figure 13 shows the median, the 10th and 90th percentiles
of the total SLAV values in the experiments. The results fol-
low MDP*<MDP<CloudScale<Sandpiper, which is corre-
lated with the number of overloaded PMs, since SLAV is
affected by the resource utilization of the PMs. MDP and
MDP* generate a lower SLAV value because they are able to
maintain the system in a load balance state for a long time.
The result that MDP* generates a lower SLAV value than
MDP shows that the MDP-based algorithm is effective in re-
ducing SLAV by effective migration VM selection and des-
tination PM selection. CloudScale outperforms Sandpiper
since it has less overloadeds due to its proactive prediction.

5. Conclusion
In this paper, we propose an MDP-based load balancing
algorithm as an online decision making strategy to enhance
the performance of cloud datacenters. Compared to the pre-
vious reactive load balancing algorithms, the MDP-based
load balancing algorithm maintains the load balance state
for a longer time (hence lower SLAV) and also produces
low load balancing delay and overhead. Its advantages com-
pared to previous proactive load balancing algorithms are
three-fold. First, it aims to maintain a long-term load bal-
ance for both the source PM that performs VM migrations
to release its workload and the destination PM that accom-
modated this VM, and hence prevents subsequent load im-
balance. Second, it quickly determines which VMs to mi-
grate out to achieve load balance, which eliminates the need
of additional operations to identify migration VMs. Third,
it quickly determines destination PMs with much less over-
head and delay. Our trace-driven experiments show that the
MDP-based load balancing algorithm outperforms previous
reactive and proactive algorithms. MDP is able to maintain
the system in a relatively balanced state with a smaller num-
ber of PM overload occurrences in the system by triggering
fewer number of VM migrations. Further, MDP consumes
less CPU time and memory under different workload sce-
narios. In our future work, we aim to make our algorithm
fully distributed to increase its scalability.

Acknowledgments
This research was supported in part by U.S. NSF grants
NSF-1404981, IIS-1354123, CNS-1254006, CNS-1249603,
Microsoft Research Faculty Fellowship 8300751.

References
[1] Microsoft Azure. http://www.windowsazure.com.

[2] BEA System Inc. http://www.bea.com.

[3] Amazon. Amazon Web Service. http://aws.amazon.com/.
[4] E. Arzuaga and D. R. Kaeli. Quantifying load imbalance

on virtualized enterprise servers. In Proc. of WOSP/SIPEW,
2010.

[5] R. Bellman. Dynamic Programming. Princeton University
Press, 1957.

[6] A. Beloglazov and R. Buyya. Optimal online deterministic
algorithms and adaptive heuristics for energy and performance
efficient dynamic consolidation of virtual machines in cloud
data centers. CCPE, 24(13):1397–1420, 2011.

[7] A. Beloglazov and R. Buyya. Managing overloaded hosts
for dynamic consolidation of virtual machines in cloud data
centers under quality of service constraints. TPDS, 24(7):
1366–1379, 2013.

[8] N. Bobroff, A. Kochut, and K. Beaty. Dynamic placement of
virtual machines for managing sla violations. In Proc. of IM,
2007.

[9] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. De Rose, and
R. Buyya. Cloudsim: a toolkit for modeling and simulation
of cloud computing environments and evaluation of resource
provisioning algorithms. SPE, 41(1):23–50, 2011.

[10] A. Chandra, W. Gong, and P. J. Shenoy. Dynamic resource
allocation for shared data centers using online measurements.
In Proc. of SIGMETRICS, 2003.

[11] L. Chen, H. Shen, and S. Sapra. RIAL: Resource intensity
aware load balancing in clouds. In Proc. of INFOCOM, 2014.

[12] Z. Gong, X. Gu, and J. Wilkes. PRESS: Predictive elastic
resource scaling for cloud systems. In Proc. of CNSM, 2010.

[13] GoogleTraceWebsite. Google cluster data.
https://code.google.com/p/googleclusterdata/.

[14] R. A. Howard. Dynamic Programming and Markov Pro-
cesses. MIT Press, 1960.

[15] D. Kondo, B. Javadi, P. Malecot, F. Cappello, and D. P. Ander-
son. Cost-benefit analysis of cloud computing versus desktop
grids. In Proc. of IPDPS, 2009.

[16] M. Lauri and E. Brad. Energy Efficiency for Information
Technology: How to Reduce Power Consumption in Servers
and Data Centers. Intel Press, 2009.

[17] A. Sallam and K. Li. A multi-objective virtual machine
migration policy in cloud systems. The Computer Journal,
57(2):195–204, 2013.

[18] U. Sharma, P. J. Shenoy, S. Sahu, and A. Shaikh. A cost-
aware elasticity provisioning system for the cloud. In Proc. of
ICDCS, 2011.

[19] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes. CloudScale: Elastic
resource scaling for multi-tenant cloud systems. In Proc. of
SOCC, 2011.

[20] A. Singh, M. R. Korupolu, and D. Mohapatra. Server-storage
virtualization: integration and load balancing in data centers.
In Proc. of SC, 2008.

[21] M. Tarighi, S. A. Motamedi, and S. Sharifian. A new model
for virtual machine migration in virtualized cluster server
based on fuzzy decision making. CoRR, 1(1):40–51, 2010.

[22] T. Wood, P. J. Shenoy, A. Venkataramani, and M. S. Yousif.
Black-box and gray-box strategies for virtual machine migra-
tion. In Proc. of NSDI, 2007.

[23] T. Wood, P. Shenoy, A. Venkataramani, and M. Yousif. Sand-
piper: Black-box and gray-box resource management for vir-
tual machines. Computer Networks, 53(17):2923–2938, 2009.

