
Probabilistic Demand Allocation for Cloud Service
Brokerage

Chenxi Qiu, Haiying Shen and Liuhua Chen
Dept. of Electrical and Computer Engineering

Clemson University, Clemson, USA

{chenxiq, shenh, liuhuac}@clemson.edu

Abstract—Functioning as an intermediary between cloud ten-
ants and providers, cloud service brokerages (CSBs) bring about
great benefits to the cloud market. To maximize its own profit,
a CSB is faced with a challenge: how to reserve servers and
distribute tenant demands to the reserved servers such that the
total reservation cost is minimized while the reserved servers can
satisfy the tenant service level agreement (SLA)? Demand predic-
tion and demand allocation are two steps to solve this problem.
However, previous demand prediction methods cannot accurately
predict tenant demands since they cannot accurately estimate
prediction errors and also assume the existence of seasonal
periods of demands. Previous demand allocation methods only
aim to minimize the number of reserved servers rather than the
server reservation cost, which is more challenging. To solve this
challenge, we propose a Probabilistic Demand Allocation system
(PDA). It predicts demands and more accurate prediction errors
without the assumption of the existence of seasonal periods. It
then formulates a nonlinear programming problem and has a
decentralized method to find the problem solution. In addition
to overcoming the shortcomings in previous methods, PDA is
novel in that rather than separately conducting the prediction
and demand allocation, it considers prediction errors in demand
allocation in order to allocate demands with offsetting prediction
errors (e.g., -1 and +1) to the same server, which helps find the
problem solution. Both simulation and real-world experimental
results demonstrate the superior performance of our system in
reducing servers’ reservation cost.

I. INTRODUCTION

As innovative approaches continue to emerge in cloud com-

puting, it is becoming clear that simple cloud interoperability

between cloud tenants and cloud providers is often neither

realistic nor the most advantageous. In particular, if a cloud

tenant wants to use the cloud resource from multiple cloud

providers, it needs to negotiate multiple contracts with the

cloud providers, which results in multiple payments, multiple

data streams, and multiple providers to check up on. Then,

tenants are faced with a problem of how to make the services

from multiple cloud providers work together to gain maximum

profit. However, determining the most advantageous ways to

procure, implement and manage cloud technologies to handle

this problem presents complex issues to cloud tenants. Under

this circumstance, cloud service brokerages (CSBs) have arisen

in the cloud market [1]–[4].

A CSB is a third-party individual or business that acts as

an intermediary between the tenants and the cloud providers.

A CSB reserves the cloud resources (e.g., servers) from the

cloud providers and sells services (e.g. virtual machine (VM))

along with administration and security to the tenants with

higher prices [5]. Usually, CSBs can make cloud services

more valuable for cloud tenants, because CSBs work closely

with cloud providers to get price breaks or access to more

information about how much resources are required for a

service [1]. In addition, CSBs can enhance the security of

cloud services for tenants because they can monitor, track,

protect and enforce company policies across all demands from

different tenants [1]. Thus, CSBs can make it easier, less

expensive, safer and more productive for tenants to use cloud

resources, particularly when a tenant’s demands span multiple

cloud service providers.

To maximize its own profit, a CSB is faced with a challenge:

how to reserve servers and distribute tenant demands to the re-
served servers such that the total reservation cost is minimized
while the reserved servers can satisfy all the demands based
on tenants’ service level agreement (SLA) (i.e., satisfying all
the demands with a given probability)?
Demand prediction and demand allocation are two important

functions to handle this challenge. Demand prediction predicts

the amount of resources required by each demand in a future

time period (e.g., one month) and demand allocation allocates

demands to servers that can meet the demands. Previous

demand allocation works [6]–[8] aim to find an allocation

schedule that minimizes the number of allocated servers while

satisfy all demands. However, these works are based on the

assumption that the demands can be accurately predicted.

Unfortunately, previous demand prediction methods [9]–[11]

cannot accurately predict tenant demands since they neglect or

cannot accurately estimate prediction errors and also assume

the existence of seasonal periods of demands. Further, their

methods to estimate the seasonal period are not time-efficient

[12] and they are not suitable for predicting demands that do

not exhibit seasonal periods (e.g. some demands in Google

cluster [13]). A recent work, CloudScale [11], takes into

account the underestimation of demands in prediction and adds

padding on demands to avoid underestimation. However, it

omits the case that the demands can be also overestimated,

which leads to under-utilization of server resources.

Even if we can accurately estimate the demands, the pre-

vious demand allocation methods cannot solve the above-

mentioned challenge because their objective is to minimize the

number of reserved servers while our goal is to minimize the

cost of the reserved servers, which however is more difficult.

IEEE INFOCOM 2016 - The 35th Annual IEEE International Conference on Computer Communications

978-1-4673-9953-1/16/$31.00 ©2016 IEEE

This is because we need to consider not only which server

can best fit a given demand (in order to minimize the number

of servers) but also the reservation cost of the server. In most

cases, the server that best fits a demand is not the server with

the minimum reservation cost.

To solve the above-indicated challenge, we propose a Prob-
abilistic Demand Allocation (PDA) system, which consists of

demand prediction and demand allocation.

Demand prediction. We predict demands and more accu-

rate prediction errors without the assumption of the existence

of seasonal periods. Specifically, we model the historical data

of tenants’ demand by the seasonal autocorrelated moving

average (SARMA) model for demand prediction. We estimate

the prediction errors using the maximum likelihood estimation

(MLE) [14], which determines the prediction errors that make

the observed demands the most probable.

Demand allocation. We formulate a stochastic program-

ming problem for the challenge and find the problem solution

through theoretical work. The input of this problem is the

predicted value of each demand and its estimation error in the

next period and the output determines which servers should

be reserved and how to allocate each demand to the reserved

servers. Finally, we propose a decentralized method using the

technique of Lagrangian dual decomposition [15] to find the

solution for this problem.

In addition to overcoming the shortcomings in previous

methods, PDA is novel in that rather than separately con-

ducting the prediction and demand allocation, it considers

prediction errors in demand allocation in order to allocate

demands with offsetting prediction errors (e.g., -1 and +1)

to the same server, which helps find the problem solution.

Within our knowledge, this is the first work that provides

guidance to CSBs in server reservation and demand allocation

across multiple clouds to minimize the reservation cost while

guarantee the reserved servers can satisfy demands with a

given probability.

We test the performance of PDA in comparison with the

previous algorithms by both trace-driven experiments and

on Amazon EC2 [16]. The experimental results demonstrate

the superior performance of our system. In summary, our

contributions can be summarized as follows:

1. We design a prediction method that can predict the future

demand cost based on the observed historical data. Differ-

ent from previous prediction method that only considers the

possibility of underestimation, we consider both cases of

underestimation and overestimation.

2. Using the predicted data, we formulate a new demand

allocation problem for the CSB, namely PDA, which has

a different objective with the traditional demand allocation

problem, i.e., the new problem’s objective is to minimize

the cost of the reserved servers, rather than to minimize the

number of servers. As a solution, we also propose a gradient

method based on Lagrangian dual decomposition, which can

be implemented in a decentralized way.

3. Finally, we test the performance of PDA in comparison with

the previous algorithms by both trace-driven experiments on a

simulator and on Amazon EC2 [16]. The experimental results

demonstrate the superior performance of our algorithms in the

aspects of total reservation cost and resource utilization.

The remainder of this paper is organized as follows: Section

II outlines the framework of PDA and introduces the system

model used in this paper. Section III and Section IV describe

the prediction part and demand allocation part of PDA, respec-

tively. Section VI evaluates the performance of our proposed

schemes in comparison with other algorithms. Section VII

presents related work. Section VIII concludes this paper with

remarks on our future work compared with previous methods.

II. THE ARCHITECTURE OF PDA

In this section, we will first briefly outline the architecture of

the PDA system, which is composed of two parts: the demand
prediction part and the demand allocation part. Also, we

will describe the system model and some important concepts,

notations, and assumptions that will be used in this paper.

First, we consider a scenario composed of multiple public

cloud providers, tenants, and a CSB. The CSB reserves servers

from cloud providers and allocates the demands from tenants

to the reserved servers. We assume a dynamic system, i.e.,

the whole time span is partitioned into a number of periods

(e.g., one month for a period) and the CSB needs to re-reserve

servers and re-allocate the demands at the beginning of each

period. The goal is to minimize the reservation cost while guar-

antee the reserved servers can still satisfy tenants’ demands

with a given probability in each period. Here, a demand can

be a VM in IaaS (Infrastructure as a Service) model or a video

game in SaaS (Software as a Service) model. Fig. 1 shows the

architecture of PDA: At the beginning of a short-term period,

the CSB analyzes the history of each demand consumption

from cloud monitoring services by monitor, and then uses the

historical data to predict the expected value of each demand by

predictor. After that, the CSB delivers the predicted value to

allocator, which is responsible for allocating the demands to

different servers. While the CSB sells cloud service to tenants

individually, it jointly reserves the different types of cloud

resources from multiple cloud providers using the allocator.

More specifically, we assume there are totally M demands

V = {v1,v2, ...,vM} from tenants, where each demand is com-

posed of K different types of resources (e.g., CPU, memory,

and storage). In reality, the resource consumption for each

demand does not always remain the same level, but randomly

fluctuates over time. As previous works in [5], [11], [17], we

consider the case that the demands are predictable. We charac-

terize the resource consumption of each demand vl by a time
series {wl

t}t∈Z+ (l = 1, ...,M), where wl
t = [wl,1

t ...wl,k
t ...wl,K

t]

and wl,k
t represents the consumption of type k resource at time

slot t in demand vl . At each period t, the CSB collects each

{wl
1, ...,w

l
t−1} from the monitor, and then uses the predictor

to predict wl
t . In addition, we don’t consider the case that the

demands can enter or leave the system.

Suppose that the CSB needs to allocate demands at be-

ginning of period T . After getting wl
T from the predictor,

the CSB uses the allocator to allocate the demand of tenants

Allocator

...

Monitor

...

Predictor

Cloud Service
Brokerage

Tenants

Cloud
Providers

Allocate demands
to servers

Predicted
dataMonitored

data

Request

Fig. 1. Cloud service brokerage.

to different cloud providers. Similar to demand, each server

si can be characterized by a K-dimensional capacity vector
bi = [bi,1, ...,bi,K]

�, where each dimension bi, j represents the

server’s capacity on type- j resource. We assume that there

are N heterogeneous servers S = {s1, ...,sN}. Here, “heteroge-

neous” means that the servers in S have different reservation

costs and different capacity vectors. We normalize the entries

of each wl
T and each bi through dividing wl,k

T and bi,k by

bmax = maxi,k bi,k in all demands and all servers, respectively.

We assume that the reservation price of each server is fixed

when it is used regardless of its resource utilization [8], and

we use ci to denote the reservation price of each si and

c = [c1, ...,cN]
�.

We assume that cloud providers always have enough re-

source to sell to CSB [5], which is justified by the “illusion

of infinite capacity”. We use indicator variable xi to represent

whether si is purchased by the CSB: if yes, xi = 1; otherwise

xi = 0. We use indicator variable yi,l to denote whether demand

vl is distributed to server si: if yes, yi,l = 1; otherwise yi,l = 0.

We define ε as the risk factor. The objective of the allocator

is to minimize the reservation cost while guaranteing all

the demands can be satisfied by the reserved servers with a

given probability 1−ε . We represent the allocator’s objective

formally by

min c�x (1)

s.t. Pr

(
∑

l
wl,k

T yi,l > bi,kxi

)
≤ ε ∀i,k. (2)

Here, Equ. (2) means that, for each server si, allocator requires

the probability that the total consumption of the demands

allocated to this server exceeds the server’s capacity to be no

higher than ε . In addition, each demand should be allocated

to exactly one server, i.e.,

y j1 = 1, (3)

where 1 is an N dimensional vector with each entry equals

to 1. Later on, we will prove that the problem with objective

function (1) and constraints (2) (3) is NP-hard (Section V-A),

and introduce how to solve this problem using the subgradient

method [15] (Section V-B).

0 100 200 300 400 500 600 700 800 900
0

0.01

0.02

0.03

0.04

0.05

0.06

Time (5 minutes)

C
PU

 u
til

iz
at

io
n

Fig. 2. The seasonal period varies in different demands.

III. DEMAND PREDICTION

In this section, we will introduce how to predict demands of

different types of resources for tenants. As a solution, we use

the seasonal autoregressive moving-average (SARMA) model,

which has been widely used for the prediction of time series

[18]. In Section III-A, we will first introduce the problems

we need to solve to predict demands more accurately and

more efficiently. In Section III-B and Section III-C, we will

introduce how we solve these problems.

A. Accurate and Efficient Demand Prediction

Previous demand prediction methods assume the existence

of seasonal period [19]. However, we observed from the trace

in Google cluster [13], which records the CPU and memory

resource utilization on a cluster of about 11000 machines from

May 2011 for 29 days in every 5 minutes, which shows that

not all the demands has seasonality. Specifically, we analyze

all these demands and find that 32.7% demands do not have

seasonality. For example, Fig. 2 shows that no seasonality

exists for the CPU utilization of a demand that we picked up

in Google cluster within 900 intervals, where each interval

lasts for 5 minutes. We then use SARMA for prediction,

which can describe not only the time series with seasonality

but also the time series without seasonality. Specifically,

we first need to estimate the parameters of SARMA using

the historical demand consumption, and then based on the

estimated parameters, we predict the future demands ŵl,k
T

(1 ≤ l ≤ M,1 ≤ k ≤ K) using SARMA. In SARMA, the

parameter d denotes the seasonal period. If no seasonality is

found, the parameter d = T , which means seasonality does

not exist. After estimating the seasonal period d, we can use

the Innovation algorithm [18] to estimate all other parameters

in SARMA. If a demand follows seasonality, we need to

efficiently estimate the seasonal period of the demand. After

the prediction, we also need to estimate the prediction errors

for more accurate demand prediction. In particular, there are

two problems we need to solve and we introduce the solutions

in Sections III-B and III-C.

Seasonal period estimation. In our prediction method, we

use Fast Hartley Transform (FHT) [12] to estimate the seasonal

period [20], [21].

Prediction error estimation. Because the noise cannot be

predicted even in a stationary time series, the prediction errors

cannot be avoided, i.e., the actual demand is higher or lower

than the expected demand. However, we need to determine

t

CPU

O

HT-1

H1

H2

t

t

t
O

O

O

...

+

+

O

noise

=

FHT of noise

t

t

+

FHT of the
original series

Original
series

CPU

CPU

CPU

CPU

Fig. 3. FHT-based estimation of seasonal period in a demand.

the allocation of a demand by its predicted resource cost,

prediction errors may lead to resource overload or under-

utilization. Recall that in PDA, each tenant’s demand must be

satisfied with probability higher than 1− ε , simply using the

predicted value from SARMA cannot guarantee meeting such

a requirement and also previous work [11] only considered

underestimation. To solve this problem, we estimate the vari-

ance of prediction errors using maximum likelihood estimation

(MLE) [14], which determines the parametric values that make

the observed results the most probable.

B. Seasonal Period Estimation

To estimate the seasonal period of each demand, we use

a signal processing technique, called FHT [12], to discover

the seasonal period. Given a series {wl,k
1 , ...,wl,k

T−1}, FHT is

defined as a linear and invertible function H : Rn →R
n, which

decomposes the T − 1 elements in a resource consumption

time series {wl,k
1 , ...,wl,k

T } into T −1 periodic series (as shown

in Fig. 3). The mth period series has the period T−1
2πm and the

amplitude Hm, which can be calculated by

Hm =
T

∑
t=1

wl,k
t

[
cos

(
2π

T −1
tm
)
+ sin

(
2π

T −1
tm
)]

(4)

where m = 1, . . . ,T − 1. We employ FHT to calculate the

dominant frequencies (whose Hms are higher than a given

threshold) of resource demand, and then pick the lowest

dominant frequency. Suppose that the frequency we choose is

1/d′, then the estimated seasonal period d equals d′. Here, we

don’t choose the high dominate frequencies to determine the

seasonal period because they cannot easily be differentiated

from noise [14] (Fig. 3).

If there is no dominant frequency selected in FHT, which

means no seasonality exists in the demand, then the seasonal

period d = T in SARMA. Using d and and all other estimated

parameters in SARMA, we finally get the expected value of

all the demands using SARMA.

C. Prediction Error Estimation

As we mentioned before, prediction errors cannot be avoid-

ed during the predicting process. Hence, we need to esti-

mate the distribution of these errors, such as variance. We

implement the estimation of prediction error variance using

maximum likelihood estimation [14], which determines the

prediction error variance, which is defined by

σ l,k =
∑T−1

t=1

(
ŵl,k

t −wl,k
t

)2

T −1
(5)

where wl,k
t and ŵl,k

t represent the actual value and expected

value of vl on resource k. In the following we use vector vl,k to

represent the errors [wl,k
1 −wl,k

1 , ...,wl,k
T−1 −wl,k

T−1]. Then, MLE

tries find the value of σ l,k
t , i.e., the prediction error variance,

that makes the observed results vl,k the most probable. That

is, given a predicted value, we estimate the predicted error

variance. To do this, we find the value of σ l,k
t that maximizes

the likelihood function Ll,k
(
vl,k|σ l,k

)
,

Ll,k
(

vl,k|σ l,k
)
= ln f

(
σ l,k
)

(6)

which represents the probability that vl,k happens given σ l,k,

that is its partial derivative, i.e.,
∂Ll,k(σ l,k|vl,k)

∂σ l,k
t

, should be

equal to 0. In the following, we represent how to calculate

Ll,k
(
vl,k|σ l,k

)
, and then estimate the prediction error variance

σ l,k
t , when the partial derivative equals 0.

To calculate Ll,k
(
vl,k|σ l,k

)
, we first need to specify the

joint PDF for vl,k. Here, we use a widely used statistic

model to describe vl,k in time series, which assumes that

the demands vl,k follows multi-variant Gaussian distribution,

which is a widely used statistic model to describe the noise,

i.e., prediction errors, [14], [18], [22]

f
(

σ l,k
)
=

1√
(2π)T |Γl,k

n |
exp

(
−1

2
vl,k�

(
Γl,k

n

)−1
vl,k
)
, (7)

where Γl,k
n is the covariance matrix of vl,k. Also, from Fig.

4(b), we observe that this assumption is suitable to describe

the trace in Google cluster. According to Equ. (6) and Equ.

(7), we can derive that

Ll,k
(

vl,k|σ l,k
)
=−1

2

(
T ln2π + ln

∣∣∣Γl,k
n

∣∣∣)− 1

2
vl,k�

(
Γl,k

n

)−1
vl,k

(8)

Take the partial derivative of Ll,k
(
vl,k|σ l,k

)
, we obtain

∂Ll,k
(
vl,k|σ̂ l,k

)
∂ σ̂ l,k

t

= 0, t = 1,2, ...,T. (9)

or equivalently,

1∣∣∣Γl,k
n

∣∣∣
∂
∣∣∣Γl,k

n

∣∣∣
∂ σ̂ l,k

t

+
vl,k�(
Γl,k

n

)2

∂Γl,k
n

∂ σ̂ l,k
t

vl,k = 0, t = 1,2, ...,T. (10)

After solving Equ. (10), we can obtain the value of σ l,k
T

σ̂ l,k
T =

∑T
t=1

(
vl,k
)2

T
(11)

which is the prediction error variance for the demand vl’s kth

resource.

0.0 0.4 0.8 1.2 1.6 2.0
0

1

2

3

4

5

6

7

8

Probability density of overestimation
Pe

rc
en

ta
ge

 (%
)

Fig. 4. Overestimation and underestimation are equally likely to happen.

IV. DEMAND ALLOCATION

Based on the predicted demands and the prediction errors

calculated in Section III, in this section, we focus on deciding

which servers to reserve and how to allocate demands to

handle the challenge indicated in Section I, that is, minimizing

the total reservation cost and guaranteeing that the reserved

servers can satisfy the requirement of each demand with the

probability no smaller than 1− ε . In Section V, we introduce

the rationale of our demand allocation method. In Section V-A,

we formally formulate this demand allocation problem, namely

the probabilistic demand allocation (PDA) problem and prove

the NP-hardness of this problem. In Section V-B, we introduce

how to solve this problem.

V. RATIONALE OF THE DEMAND ALLOCATION METHOD

Using the previous demand prediction method, we first

study whether demand overestimation and underestimation co-

exist and have similar probability to occur.

We run our prediction method on the CPU utilization of

3000 demands in Google cluster [13], and measure the ratio

of overestimation over underestimation in the prediction of

each demand. From the test, we found that this ratio is no

larger than 2. Then, we partition the interval [0,2] to 200

intervals: [0,0.01), [0.01,0.02), ..., [1.99,2.00]. Fig. 4 shows

the percentage of demand ratios in each interval. We find

that over 95% of the demands have the ratios in [0.95,1.05),
which means that overestimation and underestimation are

equally likely to happen for each demand in most cases.

Then, we test whether the distributions of the magnitude

of overestimation and underestimation of each demand are

similar. Specifically, we partition the prediction error interval

[−0.15,0.15] to 300 intervals evenly. For each interval, we

count the percentage of the prediction errors that reside in

each interval for randomly chosen demands. We observe that

the magnitudes of overestimation and underestimation have

similar distributions over these intervals for each demand as

shown in Fig. 4(b).

Previous methods (e.g., CloudScale) achieve high SLA

guarantee at the cost of under-utilization of resources. They

always add a padding on predicted demands to handle under-

estimation. However, they omit the impact of overestimation.

PDA considers both underestimation and overestimation. It

aims to allocate demands with similar underestimation and

overestimation together in a server, so that the underestima-

tion and overestimation can offset each other and hence the

server resources are less likely to be either overutilized or

underutilized.

A. Problem Formulation and Analysis

Recall that the scenario we have considered is composed of

a CSB, M demands V = {v1,v2, ...,vM}, and N heterogeneous

servers S = {s1, ...,sN}. At time T , the allocator of each

CSB needs to allocate the demands to the servers. Using

the prediction method described in Section III, CSBs get

the estimated demand vector and the prediction error vector
for each demand vl , represented by ŵl

T = [wl,1
T , ...,wl,K

T]� and

σ̂ l
T = [σ̂ l,1

T , ..., σ̂ l,K
T]�, respectively.

Recall that yi,l represents whether demand vl is distributed to

server si. Then, the sum demand consumption for resource k in

si is calculated by ω�
k,T yi, where ωk,T = [w1,k

T , ...,wM,k
T]�. Also,

let ω̂k,T = [ŵ1,k
T , ..., ŵM,k

T]� and σ̂k,T = [σ̂1,k
T , ...,σM,k

T]�. We use

c�x = ∑i cixi to represent the total reservation cost of servers.

Our objective is to minimize the cost of all the reservation cost

of servers and satisfy each demand with probability no smaller

than 1− ε . Accordingly, we formulate the PDA problem as

follows:
min c�x (12)

s.t. Pr
(

ω�
k,T yi ≤ bi,kxi

)
≥ 1− ε, ∀i,k (13)

y j1 = 1 (14)

where ω�
k,T is random vector that follows normal distribution

with mean 0 and variance [σ̂1,k
T , ..., σ̂M,k

T]. The first constraint

(Equ. (13)) means that, for each server si and resource k, the

probability that the resource consumption of demands assigned

to si does not exceed si’s capacity on resource k is no smaller

than 1−ε . The second constraint (Equ. (14)) means that each

demand should be allocated to exact one server.

The input of the problem is the predicted demand at period

T , say ŵl
T and σ̂ l

T , and capacity vector of each server si, say

bi. The output of the algorithm is the solution of PDA z, where

z = [z1, ...,zN]
� and zi = [xi,yi1,yi2, ...,yiM]�, which contains

all the information of xi and yi,l . Here xi indicates whether si
is reserved and yi,l indicates whether vl is allocated to si. Then

the allocator determines which server should be reserved and

how to allocate the demands to reserved servers according to

xi and yi,l .

Proposition 5.1: The PDA problem can be expressed as the

SOCMIP problem [22]

min f (z) =
N

∑
i=1

c�i zi (15)

s.t. gi(z) = φ(ε)‖Σ′1/2
k zi‖−b�

i,kzi ≤ 0, (16)

i = 1, ...,N, k = 1, ...,K (17)

h(z) = E�z−1 = 0, (18)

where each Σ′
k is determined by the input σ̂ k,T and each

bi,k is determined by the input ωk,T , ci is an N dimensional

vector such that the first entry equals ci (i = 1, ...,N) and all

other entries equals 0, E = [e1, ...,eM], and e j is a (M + 1)N
dimensional vector such that the jth entry equals 1 and all

other entries equal to 0.

Master

sub1

...

λ(k)

λ (k)

z(k)

N

1

Adjusts λ
using
subgradient
method

Find the
optimal solution
zi of each
subproblem in
parallelsubN

1

z (k)
N

Fig. 5. Decentralized subgradient method at the kth iteration.

B. Decentralized Subgradient Algorithm

SOCMIP has been proved NP-hard [15]. Hence, it is impos-

sible to get the optimal solution of SOCMIP within polynomial

time. As a solution, we first relax the feasible region of

SOCMIP from integers to real numbers. However, even for the

relaxed SOCMIP, the subgradient algorithm is still not time-

efficient. Considering the scalability of our system, we need to

find a way to realize the algorithm in a decentralized way. In

the following, we design a decentralized method based on the

Lagrangian dual decomposition, which is a classical method

in combinatorial optimization and has been widely applied to

distributed and parallel computation [15]. More specifically,

the decentralized method is composed of three steps, where the

first two steps (Lagrangian dual decomposition) decompose

the problem and the third step solves the problem:

1. We derive a dual problem of the relaxed SOCMIP,

denoted by DSOCMIP (Equ. (19) - Equ. (22)).

2. We decompose the dual problem into a set of subproblems

(Equ. (23) - Equ. (28)).

3. We use subgradient to get the solutions of all the sub-

problems, and combine and adjust all these solutions to

get the dual solution and primal solution, and then round

the primal solution to get z.

Step 1. Creating a dual problem of the relaxed SOCMIP.
To create the dual problem of the relaxed SOCMIP, we follow

the steps defined by the Lagrangian dual decomposition (Equ.

(19) - Equ. (28)). We first define the Lagrangian function Λ :

Z
N(M+1)×R

N ×R→R as follows. In this function, the vector

λ = [λ1, ...,λN] is called the Lagrange multiplier vector and

ν is called Lagrange multiplier (λ ∈ R
N , λ
 0 and ν ∈ R)

associated with SOCMIP:

Λ(z,λ ,ν) =
N

∑
i=1

c�i zi +
N

∑
i=1

λigi(z)+νh(z)

=
N

∑
i=1

(
c�i zi +λi

(
‖Σ1/2

i zi‖
)
−b�

i zi

)
[i]

+ ν
(

E�z−1
)

[ii] (19)

Then, we define the Lagrangian dual function by

Θ(λ ,ν) = infΛ(z,λ ,ν). (20)

Therefore, DSOCMIP is to find the solution

max Θ(λ ,ν) (21)

s.t. λ
 0 (22)

Step 2. Decomposing the dual problem of the relaxed
SOCMIP. Note that the Lagrangian function in Equ. (19)

has two parts (indicated by [i] and [ii]). Accordingly, we

decompose the problem to two parts denoted by Λ0(z,ν) and

Λi(zi,λi) (i = 1, ...,N), respectively.

Λ0(z,ν)� ν
(

E�z−1
)

(23)

Λi(zi,λi)� c�i zi +λi

(
‖Σ1/2

i zi‖−b�
i zi

)
(24)

Then, we define sub-problem functions Θ0(λ) and Θi(λi) by

Θ0(ν)� inf{Λ0(z,ν)} and Θi(λi)� inf{Λi(zi,λi)}. Hence, the

Lagrangian dual function can be written as:

Θ(λ ,ν) = inf
z∈D

Λ(z,λ ,ν) = Θ0(ν)+
N

∑
i=1

Θi(λi). (25)

where D = {z | 0 ≤ xi ≤ 1,0 ≤ yi j ≤ 1,1 ≤ i ≤ N,1 ≤ j ≤ M}.

As for Θ0(ν), if E�z− 1 < 0, then setting ν = ∞ leads to

the minimum value of Θ0(ν) to be −∞; if E�z−1 > 0, then

setting ν = −∞ leads to the minimum value of Θ0(ν) to be

−∞. Hence, in the above two cases, it is impossible for Θ0(ν)
to get its maximum value. Accordingly, we only consider the

case that E�z−1 = 0, where

Θ0(ν)� inf
z∈D0

{Λ0(z,ν)}= inf
z∈D0

{E�z−1}= 0 (26)

where D0 =D ∩{z | z−1 = 0}. Then, Θ(λ ,ν) = ∑N
i=1 Θi(λi).

Note that all Θi(λi) can be evaluated independently, i.e., in

parallel. Hence, DSOCMIP can be decomposed into a set of

subproblems subi (i = 1, ...,N):

max Θi(λi) (27)

s.t. λi
 0 (28)

Step 3. Finding the solution of SOCMIP. To solve the

subproblems to get the final problem solution, we use a de-

centralized subgradient method which finds the result by com-

bining and adjusting the solutions from all the subproblems

and is guaranteed to converge to the optimal values provided

that the step sizes of subgradient are sufficiently small [15].

We first define the objective function of the master problem by

max ∑i Θi(λi). As shown in Fig. 5, the decentralized algorithm

collects and compares the subproblems’ solutions and sends

feedback to subproblems to adjust the solutions if conflicts

exist. After getting the solution of the relaxed SOCMIP z, we

obtain z by rounding z.

VI. PERFORMANCE EVALUATION

We conducted both simulation and real-world experiments

(on Amazon EC2 [16]) driven by the Google Cluster [13]

(introduced previously). We first evaluated the effectiveness of

our prediction algorithm with the prediction method in Cloud-

Scale [11], which is the most advanced prediction method

for cloud computing. CloudScale estimates the magnitude of

underestimation from prediction using FFT and adds a padding

on predicted demands to avoid the impact of underestimation.

We then evaluated the effectiveness of our demand allocation

algorithm in comparison with two typical demand allocation

algorithms, BFDSum (or BFD for short) and FFDSum (or FFD

for short) [8]. In both BFD and FFD, all servers’ capacity

vectors and demands’ consumption vectors are mapped into

singular scales, called volumes and weights, respectively. Both

BFD and FFD sort the demands in decreasing order of size

at the beginning, and then start the allocation from the first

demand. The difference is that, given a demand to allocate,

BFD iterates over all the servers and allocates the demand

into the server with the least remaining volume, while FFD

just allocates the demand into the first server in the server set

S with sufficient volume. The objective of both FFD and BFD

is to minimize the number of servers reserved rather than the

total server reservation cost. We extended them to weighted
BFD (BFD-w) and weighted FFD (FFD-w), respectively, that

consider servers’ different weights (prices) when allocating a

demand to a server. Specifically, for BFD-w, we define a metric

βi for each server si, which equals the product of si’s remaining

volume and si’s price. In each iteration, BFD-w chooses the

server with the minimum βi to allocate the demand. FFD-w

always allocates the demand to the server that has the lowest

price among the servers with sufficient remaining volume. All

these compared methods use CloudScale without padding (i.e.,

FFT) as their demand prediction method. For each demand in

the trace of Google Cluster, we used first two days’ utilization

records for prediction and the utilization records of the first

five minutes in the third day for testing. Finally, we assume

that there are three types of servers for the simulation and the

experiments on Amazon EC2, as shown in Table I.

TABLE I
THREE TYPES OF SERVERS

Type Memory CPU Price Quantity
Standard 15 GB 8 units 0.7 20
High-Memory 17.1 GB 6.5 units 0.6 20
High-CPU 7 GB 20 units 1.0 20

For prediction algorithms, the metrics we measured in-

clude: 1) Total allocated resource, which is defined as the

total amount of all the allocated resource (i.e., capacity of

reserved servers). 2) Total over allocated resource, which

is calculated as the total allocated resource minus the total

amount of predicted demands. It includes padding and reserved

resource that may not be used in the server and a smaller

value implies higher utilization of the resources of reserved

serves. 3) Probability of overload, which is defined as the

percentage of periodical recoding times that the actual total

demand exceeds the total allocated resource. In addition,

in the following experiments, we normalized the demands

and servers by dividing the CPU and memory by 20 units

and 17.1GB, respectively, which are the maximum CPU and

maximum memory of all the servers (shown in Table. I). In

the following, the metrics of total allocated resource and total

over allocated resource are normalized.

For demand allocation algorithms, the metrics we measured

include: 1) Total reservation cost, which is defined as the total

fee that the CSB needs to pay to all the cloud providers; 2)

CPU overload rate, which is defined as the percentage of

time that a server’s CPU is overloaded; 3) SLA violation rate,

40 50 600

20

40

60

80

Number of demands

CP
U

siz
e

Total allocated resource (PDA)
Total allocated resource (CloudScale)
Total over allocated resource (PDA)
Total over allocated resource
(CloudScale)

(a) Prediction for CPU

40 50 600

0.2

0.4

0.6

Number of demands

Pr
ob

. o
f o

ve
rlo

ad
 (%

)

PDA
CloudScale

(b) Prob. of CPU overload

Fig. 6. Demand prediction for Google Cluster

which is defined as the percentage of demands that are not

satisfied with probability 1−ε during the testing time, and 4)

CPU/memory utilization, which is defined as the percentage

of a server’s CPU/memory capacity that is actually consumed.

A. Demand Prediction

We first compare the performance of the prediction methods

in PDA and CloudScale. CloudScale determines the servers

and allocates the demands to the servers using FFD based

on the sum of its predicted value and the padding value for

each demand. To compare the prediction methods of PDA

and CloudScale, we also let PDA use FFD to choose servers

and allocate demands to the servers. In particular, PDA first

sorts the demands to be inserted in decreasing order by their

expected capacity, and then inserts each demand into the first

server in the list with sufficient remaining space.

Fig. 6(a) and Fig. 6(b) show the performance of PDA and

CloudScale using the Google cluster CPU trace. In particular,

Fig 6(a) compares the total allocated resource and the total

over allocated resource and Fig 6(b) shows the probability

of overload. From the figures, we find that 1) PDA needs

less total allocated resource than CloudScale, 2) the total over

allocated resource of PDA is smaller than that of CloudScale,

and 3) the probabilities of overload of PDA and CloudScale

are similar. Even though PDA aims to minimize the reservation

cost of servers rather than minimizing the total allocated

resource, which is the goal of FFD used in CloudScale,

PDA still generates less total allocated resource while pro-

duces similar probability of overload as CloudScale. This is

because PDA can more accurately estimate the prediction

errors. Specifically, when allocating demands, PDA considers

both overestimation and underestimation from the predictions,

which can offset each other and lead to less prediction errors.

However, CloudScale neglects the impact of overestimation,

leading to larger prediction errors. This is why PDA produces

smaller total over allocated resource (hence higher server

resource utilization) than CloudScale as shown in Fig 6(a)-

(d).

B. Demand Allocation

1) Trace-driven Simulation: Fig 7(a) shows the total server

reservation cost when the number of demands is varied from

40 to 60 with 2 increase in each step. We observe that

the result follows FFD≈BFD>FFD-w≈BFD-w>PDA. Recall

that, when selecting a server, all BFD-w, FFD-w, BFD, and

FFD simply map all the capacity vectors and consumption

40 45 50 55 600

10

20

30

Number of demands

To
ta

l r
es

er
va

tio
n

co
st

PDA
FFD−w
BFD−w
FFD
BFD

(a) Total reservation cost

PDA FFD−wBFD−w FFD BFD0

0.2

0.4

0.6

0.8

AlgorithmCP
U

ov
er

lo
ad

 ra
te

 (%
)

40 demands
50 demands
60 demands

(b) CPU overload rate

PDA FFD−wBFD−w FFD BFD0

0.05

0.1

0.15

Algorithm

SL
A

vio
la

tio
n

ra
te

 (%
) 40 demands

50 demands
60 demands

(c) SLA violation rate

PDA FFD−w BFD−w FFD BFD0

0.5

1

1.5

Algorithms

CP
U

ut
iliz

at
io

n 40 demands
50 demands
60 demands

(d) CPU utilization

PDA FFD−w BFD−w FFD BFD0

0.5

1

1.5

Algorithm

M
EM

 u
tili

za
tio

n

40 demands
50 demands
60 demands

(e) Memory utilization

Fig. 7. Demand allocation for Google cluster (Simulation).

vectors to single scalars without considering the bottleneck of

the resource utilization for each server, which decreases each

server’s remaining capacity for allocating more demands. PDA

has better performance because it aims to search the demand

allocation such that the total server cost is minimized. Also,

the prediction method in BFD, FFD, BFD-w, and FFD-w does

not consider the overestimation of prediction, and hence they

cannot fully utilize the resource of reserved servers comparing

to PDA, which can estimate the prediction errors before the

allocation. Comparing to FFD and BFD, FFD-w and BFD-

w have smaller total reservation cost because FFD-w and

BFD-w always choose the server with lower price to allocate

each demand, while FFD and BFD do not consider the server

prices at all. Since PDA uses the least server reservation cost

to support a given amount of demands, we are interested in

checking if it generates many server overload occurrences. Fig.

7(b) and Fig. 7(c) show the CPU’s overload rate and the SLA

violation rate of different algorithms, respectively. We observe

that for these two metrics, the result follows FFD≈BFD≈FFD-

w≈BFD-w>PDA. PDA has much smaller CPU’s overload rate

because when allocating a demand to a server, PDA allocating

the demands with the consideration of prediction errors. In

contrast, all other four methods predict the demand using FFT

without considering prediction errors, which generates larger

number of CPU overload. PDA has almost zero SLA violation

rate because it satisfies the constraint (13) when allocating

demands, which guarantees that the probability of overload

rate is lower than ε , i.e., the SLA requirement. Other four

algorithms have much higher SLA violation rates because they

40 45 50 55 600

10

20

30

Number of demands

To
ta

l r
es

er
va

tio
n

co
st

PDA
FFD−w
BFD−w
FFD
BFD

(a) Total reservation cost

PDA FFD−wBFD−w FFD BFD0

0.2

0.4

0.6

0.8

Algorithms

CP
U

ov
er

loa
d

ra
te

 (%
)

40 demands
50 demands
60 demands

(b) CPU overload rate

PDA FFD−w BFD−w FFD BFD0

0.05

0.1

0.15

0.2

Algorithm

SL
A

vio
la

to
in

 ra
te

 (%
) 40 demands

50 demands
60 demands

(c) SLA violation rate

PDA FFD−w BFD−w FFD BFD0

0.5

1

1.5

Algorithms

CP
U

ut
iliz

at
io

n 40 demands
50 demands
60 demands

(d) CPU utilization

PDA FFD−w BFD−w FFD BFD0

0.5

1

1.5

Algorithms

M
EM

 u
tili

za
tio

n

40 demands
50 demands
60 demands

(e) Memory utilization

Fig. 8. Demand allocation for Google cluster (Amazon EC2).

do not have such constraint when allocating demands and they

do not consider the prediction errors, which leads to more

resource overloads.

Furthermore, we measured the CPU and memory utiliza-

tions every 5 minutes for all servers. Fig 7(d) and Fig 7(e)

show the median, 5th and 95th percentile of the CPU and

memory utilizations at all time points of all servers of the five

algorithms with 40, 50, and 60 demands, respectively. In both

Fig 7(d) and Fig 7(e), we observed that the median utilization

follows: FFD≈FFD-w≈BFD≈BFD-w<PDA, which indicates

that PDA can more fully utilize the resources of servers and

hence save the total reservation cost. The reason is the same

as in Fig 7(a).

2) Trace-driven Real-world Experiments on Amazon EC2:
We carried out experiments in a cluster built from Amazon

EC2 US East Region. We applied the Google Cluster trace to

a synthetic load generator lookbusy [23] to emulate the real

workload in the VMs. Our algorithm uses the utilization trace

to predict the demands and then places each demand to an ap-

propriate reserved server. After allocating the demands to the

reserved servers, we measured the real resource consumptions

of each server.

Fig. 8 shows the performance of the five algorithms

implemented in Amazon EC2 using Google Cluster trace.

Comparing Fig. 7 and Fig. 8, we have the following

observations: (1) in both Fig. 7(a) and Fig. 8(a), the

total reservation cost of servers follow: FFD≈BFD>FFD-

w≈BFD-w>PDA, (2) in both Fig. 7(b)-(c) and Fig. 8(b)-(c),

the CPU overload rate and the SLA violation rate follow:

FFD≈BFD≈FFD-w≈BFD-w>PDA, and (3) in all Fig.

7(d)-(e) and Fig. 8(d)-(e), both CPU utilization and memory

utilization follow FFD≈BFD≈FFD≈BFD<PDA. The results

in Fig. 8 confirm that PDA more fully utilizes resources in

each server without overloading them and hence saves total

reservation cost in Amazon EC2.

VII. RELATED WORK

There has been two groups of works studying the demand

allocation problems. The first group of demand allocation

works [8]–[10], [24] aim to find an allocation schedule that

minimizes the number of allocated servers while satisfy all

demands. For example, Wood et al. [10] reduced the number

of servers by enabling live migration of VMs using FFD, by

taking the product of CPU, memory, and network loads. Tang

et al. [9] developed an application placement controller for

data centers, which performs demand assignment by combin-

ing the CPU and memory into a scalar by taking the ratio of

the CPU demand to the memory demand. Srikantaiah et al. [8]

proposed to use Euclidean distance between resource demands

and residual capacity as a metric for consolidation, a heuristic

analogous to Norm-based Greedy. Michael and Zaourar [24]

modified the traditional BFD algorithm by minimizing the

bin’s remaining capacity variance when selecting a bin to fit an

item, which is similar to our strategy. However, all these works

are based on the assumption that the demands are known,

which is not practical in real world.

The second group of demand allocation works predict the

demands before allocating the demands to servers [11], [17],

[19]. For example, [19] predicts the seasonal period using FFT,

which decomposes the demands into a number of periodic

series and eliminates the periodic series with high frequencies.

Niu et al. [17] predicted the demand using the auto-regression

moving average (ARMA) model, which is a widely used

prediction model for time series. However, all these works

cannot accurately predict tenant demands since they neglect

prediction errors. A recent work, CloudScale [11], takes into

account the underestimation of demands in prediction and adds

padding on demands to avoid underestimation. However, it

omits the case that the demands can be also overestimated,

which leads to under-utilization of server resources. Further,

all these methods to estimate the seasonal period are not time-

efficient [12] and they are not suitable for predicting demands

that do not exhibit seasonal periods (e.g. some demands in

Google cluster [13]).

VIII. CONCLUSIONS

In this paper, we proposed a demand allocation system for

CSB, called CSB demand allocation (PDA) system, which

aims to determine how to reserve servers and allocate demands

into the reserved servers, such that all the demands from

tenants can be satisfied with a given probability and the total

reservation cost is minimized. PDA is composed of two parts:

1) prediction and 2) demand allocation. In the prediction part,

we proposed a predictive model that can dynamically predict

different types of resources of demands based on historical

data. In the demand allocation part, given the prediction

results from prediction part, we formulated a probabilistic

demand allocation problem. We showed that PDA can also

be formulated as the SOCMIP problem, which can be solved

by the rounding cuts method. Both simulation and real-world

experimental results demonstrate the superior performance of

our system in achieving the objective in comparison with

some previous methods. In our future work, when predicting

the demands, we will further consider the correlation among

the demands from different tenants and different types of

resources. In addition, we will consider the demand migration

among different servers.

ACKNOWLEDGEMENTS

This research was supported in part by U.S. NSF grants

NSF-1404981, IIS-1354123, CNS-1254006, IBM Faculty

Award 5501145 and Microsoft Research Faculty Fellowship

8300751.

REFERENCES

[1] Gartner, “http://www.gartner.com/.”
[2] Z. C. Computing, “http://www.zimory.com/.”
[3] R. Buyya, C. S. Yeo, J. B. S. Venugopal and, and I. Brandic, “Cloud

computing and emerging it platforms: Vision, hype, and reality for
delivering computing as the 5th utility.,” Future Generation Computer
Systems, 2009.

[4] A. C. Compute, “http://aws.amazon.com/ec2/hpc- applications/,” 2011.
[5] D. Niu, C. Feng, and B. Li, “A theory of cloud bandwidth pricing for

video-on-demand providers.,” in Proc. of INFOCOM, 2012.
[6] L. Chen and H. Shen, “Consolidating complementary vms with

spatial/temporal-awareness in cloud datacenters.,” in Proc. of Infocom,
2013.

[7] S. Lee, R. Panigrahy, V. Prabhakaran, V. Ramasubramanian, K. Talwar,
L. Uyeda, and U. Wieder, “Validating heuristics for virtual machines
consolidation,” 2011.

[8] S. Srikantaiah, A. Kansal, and F. Zhao, “Energy aware consolidation for
cloud computing.,” in Proc. of HotPower, 2008.

[9] C. Tang, M. Steinder, M. Spreitzer, and G. Pacifici, “A scalable applica-
tion placement controller for enterprise data centers.,” in Proc. of WWW,
2007.

[10] T. Wood, P. J. Shenoy, A. Venkataramani, and M. S. Yousif., “Black-
box and gray-box strategies for virtual machine migration.,” in Proc. of
NSDI, 2007.

[11] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes, “Cloudscale: Elastic resource
scaling for multi-tenant cloud systems.,” in Proc. of SOCC, 2011.

[12] R. N. Bracewell, The Hartley Transform. Oxford Univ. Press, New York,
1986.

[13] G. cluster data., “https://code.google.com/p/googleclusterdata/.”
[14] S. M. Ross, Introduction to Probability Models, 8th Edition. Amsterdam:

Academic Press, 2003.
[15] M. Bazaraa, H. Sherali, and C. Shetty, “Nonlinear programming: Theory

and algorithms.,” Wiley Interscience, 2006.
[16] “Amazon EC2.” http://aws.amazon.com/ec2.
[17] D. Niu, Z. Liu, B. Li, and S. Zhao, “Demand forecast and performance

prediction in peer-assisted on-demand streaming systems.,” in Proc. of
Infocom, 2011.

[18] G. E. P. Box, G. M. Jenkins, and G. C. Reinsel, Time Series Analysis:
Forecasting and Control. WILEY, 2008.

[19] P. X. Gao, A. R. Curtis, B. Wong, and S. Keshav, “Its not easy being
green.,” in Proc. of Sigcomm, 2012.

[20] R. N. Bracewell, “The fast hartley transform.,” in Proc. of IEEE, 1986.
[21] H. S. Hou, “The fast hartley transform algorithm algorithm.,” 1987.
[22] F. TA and R. MG, “Greedy randomized adaptive search procedures.,”

Journal of global optimization, 1995.
[23] “lookbusy.” http://devin.com/lookbusy/.
[24] M. G. S. Zaourar, “Variable size vector bin packing heuristics applica-

tion to the machine reassignment problem.,” Distributed, Parallel, and
Cluster Computing.

