Given a set of candidate numbers ($C$) and a target number ($T$), find all unique combinations in $C$ where the candidate numbers sums to $T$.
The same repeated number may be chosen from $C$ unlimited number of times.
Note:
All numbers (including target) will be positive integers.
The solution set must not contain duplicate combinations.
For example, given candidate set [2, 3, 6, 7]
and target 7
,
A solution set is:
[
[7],
[2, 2, 3]
]
Solution:
public class Solution {
public List<List<Integer>> combinationSum(int[] candidates, int target) {
Arrays.sort(candidates);
List<List<Integer>> ans = new ArrayList<>();
combinationSum(ans, candidates, target, 0, new ArrayList<Integer>());
return ans;
}
public void combinationSum(List<List<Integer>> ans, int[] candidates, int target, int start, List<Integer> list){
if(target==0){
ans.add(new ArrayList<>(list));
return;
}
for(int i=start; i<candidates.length; i++){
if(target-candidates[i]<0) break;
list.add(candidates[i]);
combinationSum(ans, candidates, target-candidates[i], i, list);
list.remove(list.size()-1);
}
}
}