There are a total of n courses you have to take, labeled from 0 to n - 1.
Some courses may have prerequisites, for example to take course 0 you have to first take course 1, which is expressed as a pair: [0,1]
Given the total number of courses and a list of prerequisite pairs, is it possible for you to finish all courses?
For example:
2, [[1,0]]
There are a total of 2 courses to take. To take course 1 you should have finished course 0. So it is possible.
2, [[1,0],[0,1]]
There are a total of 2 courses to take. To take course 1 you should have finished course 0, and to take course 0 you should also have finished course 1. So it is impossible.
Note:
The input prerequisites is a graph represented by a list of edges, not adjacency matrices. Read more about how a graph is represented.
click to show more hints. Hints:
This problem is equivalent to finding if a cycle exists in a directed graph. If a cycle exists, no topological ordering exists and therefore it will be impossible to take all courses.
Topological Sort via DFS - A great video tutorial (21 minutes) on Coursera explaining the basic concepts of Topological Sort.
Topological sort could also be done via BFS.
Solution:
public class Solution {
public boolean canFinish(int numCourses, int[][] prerequisites) {
List<Set<Integer>> graph = new ArrayList<>();
for(int i=0; i<numCourses; i++)
graph.add(new HashSet<Integer>());
int[] in = new int[numCourses];
for(int[] e : prerequisites)
if(graph.get(e[1]).add(e[0]))
in[e[0]]++;
Queue<Integer> visit = new LinkedList<>();
for(int i=0; i<numCourses; i++)
if(in[i]==0) visit.add(i);
int n = 0;
while(!visit.isEmpty()){
Integer u = visit.poll(); /* u->v */
n++;
for(Integer v : graph.get(u)){
in[v]--;
if(in[v]==0) visit.add(v);
}
}
return n==numCourses;
}
}