Integer Replacement

Given a positive integer n and you can do operations as follow:

If n is even, replace n with n/2.
If n is odd, you can replace n with either n + 1 or n - 1.

What is the minimum number of replacements needed for n to become 1?

Example 1:

Input:
8

Output:
3

Explanation:
8 -> 4 -> 2 -> 1

Example 2:

Input:
7

Output:
4

Explanation:
7 -> 8 -> 4 -> 2 -> 1
or
7 -> 6 -> 3 -> 2 -> 1

Solution 1:

public class Solution {
    public int integerReplacement(int n) {
        if(n==Integer.MAX_VALUE) return 32;
        int step = 0;
        while(n>1){
            if(n%2==0){
                n = n>>1;
            } else {
                if(n==3) n--;
                else if((n&3)==3) n++;
                else n--;
            }
            step++;
        }
        return step;
    }
}

Solution 2:

public int integerReplacement(int n) {
    int c = 0;
    while (n != 1) {
        if ((n & 1) == 0) {
            n >>>= 1;
        } else if (n == 3 || Integer.bitCount(n + 1) > Integer.bitCount(n - 1)) {
            --n;
        } else {
            ++n;
        }
        ++c;
    }
    return c;
}

Solution 3:

public int integerReplacement(int n) {
    int c = 0;
    while (n != 1) {
        if ((n & 1) == 0) {
            n >>>= 1;
        } else if (n == 3 || ((n >>> 1) & 1) == 0) {
            --n;
        } else {
            ++n;
        }
        ++c;
    }
    return c;
}
comments powered by Disqus