Longest Increasing Path in a Matrix

Given an integer matrix, find the length of the longest increasing path.

From each cell, you can either move to four directions: left, right, up or down. You may NOT move diagonally or move outside of the boundary (i.e. wrap-around is not allowed).

Example 1:

nums = [
  [9,9,4],
  [6,6,8],
  [2,1,1]
]

Return 4

The longest increasing path is [1, 2, 6, 9].

Example 2:

nums = [
  [3,4,5],
  [3,2,6],
  [2,2,1]
]

Return 4

The longest increasing path is [3, 4, 5, 6]. Moving diagonally is not allowed.

Solution:

public class Solution {
    int[][] dirs = new int[][]{{0,1},{0,-1},{1,0},{-1,0}};
    
    public int longestIncreasingPath(int[][] matrix) {
        int m = matrix.length;
        if(m==0) return 0;
        int n = matrix[0].length;
        int[][] cache = new int[m][n];
        int max = 0;
        for(int i=0; i<m; i++){
            for(int j=0; j<n; j++){
                max = Math.max(max, helper(matrix, cache, i, j));
            }
        }
        return max;
    }
    public int helper(int[][] matrix, int[][] cache, int i, int j){
        if(cache[i][j]!=0) return cache[i][j];
        cache[i][j] = 1;
        int m = matrix.length;
        int n = matrix[0].length;
        for(int[] d : dirs){
            int x = i + d[0];
            int y = j + d[1];
            if(x>=0 && x<m && y>=0 && y<n && matrix[i][j]<matrix[x][y]){
                cache[i][j] = Math.max(cache[i][j], helper(matrix, cache, x, y)+1);
            }
        }
        return cache[i][j];
    }
}
comments powered by Disqus