The n-queens puzzle is the problem of placing n queens on an n×n chessboard such that no two queens attack each other.
Given an integer n, return all distinct solutions to the n-queens puzzle.
Each solution contains a distinct board configuration of the n-queens’ placement, where ‘Q’ and ‘.’ both indicate a queen and an empty space respectively.
For example, There exist two distinct solutions to the 4-queens puzzle:
[
[".Q..", // Solution 1
"...Q",
"Q...",
"..Q."],
["..Q.", // Solution 2
"Q...",
"...Q",
".Q.."]
]
Solution:
public class Solution {
public List<List<String>> solveNQueens(int n) {
List<List<String>> ans = new ArrayList<>();
List<String> candidateRows = new ArrayList<>();
String str = "";
for(int i=0; i<n; i++) str += ".";
for(int i=0; i<n; i++) candidateRows.add(str.substring(0,i)+'Q'+str.substring(i+1));
solve(ans, n, candidateRows, new ArrayList<String>());
return ans;
}
public void solve(List<List<String>> ans, int n, List<String> candidateRows, List<String> list){
/* check validation */
for(int i=0; i<list.size(); i++){
for(int j=i+1; j<list.size(); j++){
if(Math.abs(i-j)==Math.abs(list.get(i).indexOf('Q')-list.get(j).indexOf('Q'))) return;
}
}
if(list.size()==n) ans.add(new ArrayList<>(list));
for(int i=0; i<candidateRows.size(); i++){
String rowStr = candidateRows.get(i);
list.add(rowStr);
candidateRows.remove(i);
solve(ans, n, candidateRows, list);
candidateRows.add(i, rowStr);
list.remove(list.size()-1);
}
}
}